白云岛资源网 Design By www.pvray.com

前些日子,前辈推荐了一个有趣的项目 —— Real-Time-Person-Removal ,这个项目使用了 TensorFlow.js ,以及 canvas 中的图像处理实现视频中的人物消失。借此机会,复习下 canvas 基础中的图像处理。

基础 API

canvas 的图像处理能力通过 ImageData 对象来处理像素数据。主要的 API 如下:

  • createImageData():创建一个空白的 ImageData 对象
  • getImageData():获取画布像素数据,每一个像素点有 4 个值 —— rgba
  • putImageData():将像素数据写入画布

 

imageData = {
  width: Number,
  height: Number,
  data: Uint8ClampedArray
}

width 是 canvas 画布的宽或者说 x 轴的像素数量;height 是画布的高或者说 y 轴的像素数量;data 是画布的像素数据数组,总长度 w * h * 4,每 4 个值(rgba)代表一个像素。

对图片的处理

下面,我们通过几个例子来看下 canvas 基础的图片处理能力。

原图效果:

canvas 基础之图像处理的使用

const cvs = document.getElementById("canvas");
const ctx = cvs.getContext("2d");
const img = new Image();
img.src="图片 URL";
img.onload = function () {
  ctx.drawImage(img, 0, 0, w, h);
}

底片/负片效果

算法:将 255 与像素点的 rgb 的差,作为当前值。

function negative(x) {
  let y = 255 - x;
  return y;
}

效果图:

canvas 基础之图像处理的使用

const imageData =  ctx.getImageData(0, 0, w, h);
const { data } = imageData;
let l = data.length;
for(let i = 0; i < l; i+=4) {
  const r = data[i];
  const g = data[i + 1];
  const b = data[i + 2];
  data[i] = negative(r);
  data[i + 1] = negative(g);
  data[i + 2] = negative(b);
}
ctx.putImageData(imageData, 0, 0);

单色效果

单色效果就是保留当前像素的 rgb 3个值中的一个,去除其他色值。

for(let i = 0; i < l; i+=4) { // 去除了 r 、g 的值
  data[i] = 0;
  data[i + 1] = 0;
}

效果图:

canvas 基础之图像处理的使用 

灰度图

灰度图:每个像素只有一个色值的图像。0 到 255 的色值,颜色由黑变白。

for(let i = 0; i < l; i+=4) {
  const r = data[i];
  const g = data[i + 1];
  const b = data[i + 2];
  const gray = grayFn(r, g, b);
  data[i] = gray;
  data[i + 1] = gray;
  data[i + 2] = gray;
}

算法1——平均法:

const gray = (r + g + b) / 3;

效果图:

canvas 基础之图像处理的使用 

算法2——人眼感知:根据人眼对红绿蓝三色的感知程度:绿 > 红 > 蓝,给定权重划分

const gray = r * 0.3 + g * 0.59 + b * 0.11

效果图:

canvas 基础之图像处理的使用

除此以外,还有:

取最大值或最小值。

const grayMax = Math.max(r, g, b); // 值偏大,较亮
const grayMin = Math.min(r, g, b); // 值偏小,较暗

取单一通道,即 rgb 3个值中的一个。

 二值图

算法:确定一个色值,比较当前的 rgb 值,大于这个值显示黑色,否则显示白色。

for(let i = 0; i < l; i+=4) {
  const r = data[i];
  const g = data[i + 1];
  const b = data[i + 2];
  const gray = gray1(r, g, b);
  const binary = gray > 126 ? 255 : 0;
  data[i] = binary;
  data[i + 1] = binary;
  data[i + 2] = binary;
}

效果图:

canvas 基础之图像处理的使用 

高斯模糊

高斯模糊是“模糊”算法中的一种,每个像素的值都是周围相邻像素值的加权平均。原始像素的值有最大的高斯分布值(有最大的权重),相邻像素随着距离原始像素越来越远,权重也越来越小。

一阶公式:

canvas 基础之图像处理的使用

(使用一阶公式是因为一阶公式的算法比较简单)

const radius = 5; // 模糊半径
const weightMatrix = generateWeightMatrix(radius); // 权重矩阵
for(let y = 0; y < h; y++) {
  for(let x = 0; x < w; x++) {
    let [r, g, b] = [0, 0, 0];
    let sum = 0;
    let k = (y * w + x) * 4;
    for(let i = -radius; i <= radius; i++) {
      let x1 = x + i;
      if(x1 >= 0 && x1 < w) {
      let j = (y * w + x1) * 4;
      r += data[j] * weightMatrix[i + radius];
      g += data[j + 1] * weightMatrix[i + radius];
      b += data[j + 2] * weightMatrix[i + radius];
      sum += weightMatrix[i + radius];
      }
    }
    data[k] = r / sum;
    data[k + 1] = g / sum;
    data[k + 2] = b / sum;
  }
}
for(let x = 0; x < w; x++) {
  for(let y = 0; y < h; y++) {
    let [r, g, b] = [0, 0, 0];
    let sum = 0;
    let k = (y * w + x) * 4;
    for(let i = -radius; i <= radius; i++) {
      let y1 = y + i;
      if(y1 >= 0 && y1 < h) {
        let j = (y1 * w + x) * 4;
        r += data[j] * weightMatrix[i + radius];
        g += data[j + 1] * weightMatrix[i + radius];
        b += data[j + 2] * weightMatrix[i + radius];
        sum += weightMatrix[i + radius];
      }
    }
    data[k] = r / sum;
    data[k + 1] = g / sum;
    data[k + 2] = b / sum;
  }
}
function generateWeightMatrix(radius = 1, sigma) { // sigma 正态分布的标准偏差
  const a = 1 / (Math.sqrt(2 * Math.PI) * sigma);
  const b = - 1 / (2 * Math.pow(sigma, 2));
  let weight, weightSum = 0, weightMatrix = [];
  for (let i = -radius; i <= radius; i++){
    weight = a * Math.exp(b * Math.pow(i, 2));
    weightMatrix.push(weight);
    weightSum += weight;
  }
  return weightMatrix.map(item => item / weightSum); // 归一处理
}

效果图:

canvas 基础之图像处理的使用 

其他效果

这里再简单介绍下其他的图像效果处理,因为例子简单重复,所以不再给出代码和效果图。

  • 亮度调整:将 rgb 值,分别加上一个给定值。
  • 透明化处理:改变 rgba 值中的 a 值。
  • 对比度增强:将 rgb 值分别乘以 2,然后再减去一个给定值。

总结

好了,上面就是一些基础的图像处理算法。

参考资料

高斯模糊的算法
高斯模糊

白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。