装饰函数和方法
我们先定义两个简单的数学函数,一个用来计算平方和,一个用来计算平方差:
# get square sum def square_sum(a, b): return a**2 + b**2 # get square diff def square_diff(a, b): return a**2 - b**2 print(square_sum(3, 4)) print(square_diff(3, 4))
在拥有了基本的数学功能之后,我们可能想为函数增加其它的功能,比如打印输入。我们可以改写函数来实现这一点:
# modify: print input # get square sum def square_sum(a, b): print("intput:", a, b) return a**2 + b**2 # get square diff def square_diff(a, b): print("input", a, b) return a**2 - b**2 print(square_sum(3, 4)) print(square_diff(3, 4))
我们修改了函数的定义,为函数增加了功能。
现在,我们使用装饰器来实现上述修改:
def decorator(F): def new_F(a, b): print("input", a, b) return F(a, b) return new_F # get square sum @decorator def square_sum(a, b): return a**2 + b**2 # get square diff @decorator def square_diff(a, b): return a**2 - b**2 print(square_sum(3, 4)) print(square_diff(3, 4))
装饰器可以用def的形式定义,如上面代码中的decorator。装饰器接收一个可调用对象作为输入参数,并返回一个新的可调用对象。装饰器新建了一个可调用对象,也就是上面的new_F。new_F中,我们增加了打印的功能,并通过调用F(a, b)来实现原有函数的功能。
定义好装饰器后,我们就可以通过@语法使用了。在函数square_sum和square_diff定义之前调用@decorator,我们实际上将square_sum或square_diff传递给decorator,并将decorator返回的新的可调用对象赋给原来的函数名(square_sum或square_diff)。 所以,当我们调用square_sum(3, 4)的时候,就相当于:
square_sum = decorator(square_sum) square_sum(3, 4)
我们知道,Python中的变量名和对象是分离的。变量名可以指向任意一个对象。从本质上,装饰器起到的就是这样一个重新指向变量名的作用(name binding),让同一个变量名指向一个新返回的可调用对象,从而达到修改可调用对象的目的。
与加工函数类似,我们可以使用装饰器加工类的方法。
如果我们有其他的类似函数,我们可以继续调用decorator来修饰函数,而不用重复修改函数或者增加新的封装。这样,我们就提高了程序的可重复利用性,并增加了程序的可读性。
含参的装饰器
在上面的装饰器调用中,比如@decorator,该装饰器默认它后面的函数是唯一的参数。装饰器的语法允许我们调用decorator时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。
# a new wrapper layer def pre_str(pre=''): # old decorator def decorator(F): def new_F(a, b): print(pre + "input", a, b) return F(a, b) return new_F return decorator # get square sum @pre_str('^_^') def square_sum(a, b): return a**2 + b**2 # get square diff @pre_str('T_T') def square_diff(a, b): return a**2 - b**2 print(square_sum(3, 4)) print(square_diff(3, 4))
上面的pre_str是允许参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器。我们可以将它理解为一个含有环境参量的闭包。当我们使用@pre_str('^_^')调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。该调用相当于:
square_sum = pre_str('^_^') (square_sum)
装饰类
在上面的例子中,装饰器接收一个函数,并返回一个函数,从而起到加工函数的效果。在Python 2.6以后,装饰器被拓展到类。一个装饰器可以接收一个类,并返回一个类,从而起到加工类的效果。
def decorator(aClass): class newClass: def __init__(self, age): self.total_display = 0 self.wrapped = aClass(age) def display(self): self.total_display += 1 print("total display", self.total_display) self.wrapped.display() return newClass @decorator class Bird: def __init__(self, age): self.age = age def display(self): print("My age is",self.age) eagleLord = Bird(5) for i in range(3): eagleLord.display()
在decorator中,我们返回了一个新类newClass。在新类中,我们记录了原来类生成的对象(self.wrapped),并附加了新的属性total_display,用于记录调用display的次数。我们也同时更改了display方法。
通过修改,我们的Bird类可以显示调用display的次数了。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。