在上篇博客中,提到了对一个脚本进行的多次优化。当时以为已经优化得差不多了,但是当测试人员测试时,我才发现,踩到了Python的一个大坑。
在上文的优化中,对每500个用户,会进行一些计算并记录结果在磁盘文件中。原本以为这么做,这些结果就在磁盘文件中了,而不会再继续占用内存;但实际上,Python的大坑就是Python不会自动清理这些内存。这是由其本身实现决定的。具体原因网上多有文章介绍,这里就不copy了。
本篇博客将贴一个笔者的实验脚本,用以说明Python确实存在这么一个不释放内存的现象,另外也提出一个解决方案,即:先del,再显式调用gc.collect(). 脚本和具体效果见下。
实验环境一:Win 7, Python 2.7
from time import sleep, time import gc def mem(way=1): print time() for i in range(10000000): if way == 1: pass else: # way 2, 3 del i print time() if way == 1 or way == 2: pass else: # way 3 gc.collect() print time() if __name__ == "__main__": print "Test way 1: just pass" mem(way=1) sleep(20) print "Test way 2: just del" mem(way=2) sleep(20) print "Test way 3: del, and then gc.collect()" mem(way=3) sleep(20)
运行结果如下:
Test way 1: just pass 1426688589.47 1426688590.25 1426688590.25 Test way 2: just del 1426688610.25 1426688611.05 1426688611.05 Test way 3: del, and then gc.collect() 1426688631.05 1426688631.85 1426688631.95
对于way 1和way 2,结果是完全一样的,程序内存消耗峰值是326772KB,在sleep 20秒时,内存实时消耗是244820KB;
对于way 3,程序内存消耗峰值同上,但是sleep时内存实时消耗就只有6336KB了。
实验环境二: Ubuntu 14.10, Python 2.7.3
运行结果:
Test way 1: just pass 1426689577.46 1426689579.41 1426689579.41 Test way 2: just del 1426689599.43 1426689601.1 1426689601.1 Test way 3: del, and then gc.collect() 1426689621.12 1426689622.8 1426689623.11
ubuntu@my_machine:~$ ps -aux | grep test_mem Warning: bad ps syntax, perhaps a bogus '-'"htmlcode">while ((1)); do ps -aux | sort -n -k5,6 | grep my_script; free; sleep 5; done结果发现:内存并不会在每500个用户一组执行完后恢复,而是一直持续消耗到仅存约70MB时,gc才好像起作用。本环境中,机器使用的是Cloud instance,总内存2G,可用内存约为1G,本脚本内存常用消耗是900M - 1G。换句话说,对于这个脚本来说,gc并没有立即起作用,而是在系统可用内存从1 - 1.2G下降到只剩70M左右时,gc才开始发挥作用。这点确实比较奇怪,不知道和该脚本是在Thread中使用的gc.collect()是否有关,或者是gc发挥作用原本就不是可控的。笔者尚未做相关实验,可能在下篇博客中继续探讨。
但是,可以肯定的是,若不使用gc.collect(), 原脚本将会将系统内存耗尽而被杀死。这一点从syslog中可以明显看出。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!