白云岛资源网 Design By www.pvray.com

pandas

代码如下:

import pandas as pd
import numpy as np

salaries = pd.DataFrame({
 'name': ['BOSS', 'Lilei', 'Lilei', 'Han', 'BOSS', 'BOSS', 'Han', 'BOSS'],
 'Year': [2016, 2016, 2016, 2016, 2017, 2017, 2017, 2017],
 'Salary': [1, 2, 3, 4, 5, 6, 7, 8],
 'Bonus': [2, 2, 2, 2, 3, 4, 5, 6]
})
print(salaries)
print(salaries['Bonus'].duplicated(keep='first'))
print(salaries[salaries['Bonus'].duplicated(keep='first')].index)
print(salaries[salaries['Bonus'].duplicated(keep='first')])
print(salaries['Bonus'].duplicated(keep='last'))
print(salaries[salaries['Bonus'].duplicated(keep='last')].index)
print(salaries[salaries['Bonus'].duplicated(keep='last')])

输出如下:

 Bonus Salary Year name
0  2  1 2016 BOSS
1  2  2 2016 Lilei
2  2  3 2016 Lilei
3  2  4 2016 Han
4  3  5 2017 BOSS
5  4  6 2017 BOSS
6  5  7 2017 Han
7  6  8 2017 BOSS
0 False
1  True
2  True
3  True
4 False
5 False
6 False
7 False
Name: Bonus, dtype: bool
Int64Index([1, 2, 3], dtype='int64')
 Bonus Salary Year name
1  2  2 2016 Lilei
2  2  3 2016 Lilei
3  2  4 2016 Han
0  True
1  True
2  True
3 False
4 False
5 False
6 False
7 False
Name: Bonus, dtype: bool
Int64Index([0, 1, 2], dtype='int64')
 Bonus Salary Year name
0  2  1 2016 BOSS
1  2  2 2016 Lilei
2  2  3 2016 Lilei

非pandas

对于如nunpy中的这些操作主要如下:

假设有数组

a = np.array([1, 2, 1, 3, 3, 3, 0])

想找出 [1 3]

则有

方法1

m = np.zeros_like(a, dtype=bool)
m[np.unique(a, return_index=True)[1]] = True
a[~m]
方法2

a[~np.in1d(np.arange(len(a)), np.unique(a, return_index=True)[1], assume_unique=True)]
方法3

np.setxor1d(a, np.unique(a), assume_unique=True)
方法4

u, i = np.unique(a, return_inverse=True)
u[np.bincount(i) > 1]
方法5

s = np.sort(a, axis=None)
s[:-1][s[1:] == s[:-1]]

参考:https://stackoverflow.com/questions/11528078/determining-duplicate-values-in-an-array

以上这篇Pandas统计重复的列里面的值方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。