白云岛资源网 Design By www.pvray.com

本文实例讲述了Python multiprocess pool模块报错pickling error问题解决方法。分享给大家供大家参考,具体如下:

问题

之前在调用class内的函数用multiprocessing模块的pool函数进行多线程处理的时候报了以下下错误信息:

PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed

查了下官方文档发现python默认只能pickle以下的类型:

  • None, True, and False
  • integers, floating point numbers, complex numbers
  • strings, bytes, bytearrays
  • tuples, lists, sets, and dictionaries containing only picklable objects
  • functions defined at the top level of a module (using def, not lambda)
  • built-in functions defined at the top level of a module
  • classes that are defined at the top level of a module
  • instances of such classes whose dict or the result of calling getstate() is picklable (see section -
  • Pickling Class Instances for details).

函数只能pickle在顶层定义的函数,很明显的class内的函数无法被pickle因此会报错。

import multiprocessing
def work():  # top-level 函数
  print "work!"
class Foo():
  def work(self): # 非top-level函数
    print "work"
pool1 = multiprocessing.Pool(processes=4)
foo = Foo()
pool1.apply_async(foo.work)
pool1.close()
pool1.join()
# 此时报错
pool2 = multiprocessing.Pool(processes=4)
pool2.apply_async(work)
pool2.close()
pool2.join()
# 此时工作正常

解决方案

调用pathos包下的multiprocessing模块代替原生的multiprocessing。pathos中multiprocessing是用dill包改写过的,dill包可以将几乎所有python的类型都serialize,因此都可以被pickle。或者也可以自己用dill写一个(有点重复造轮子之嫌啊)

参考

1. https://stackoverflow.com/questions/8804830/python-multiprocessing-picklingerror-cant-pickle-type-function
2. https://docs.python.org/3/library/pickle.html#what-can-be-pickled-and-unpickled
3. https://github.com/uqfoundation/pathos

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。