前言
在Python中可迭代(Iterable)、迭代器(Iterator)和生成器(Generator)这几个概念是经常用到的,初学时对这几个概念也是经常混淆,现在是时候把这几个概念搞清楚了。
0x00 可迭代(Iterable)
简单的说,一个对象(在Python里面一切都是对象)只要实现了只要实现了__iter__()方法,那么用isinstance()函数检查就是Iterable对象;
例如
class IterObj: def __iter__(self): # 这里简单地返回自身 # 但实际情况可能不会这么写 # 而是通过内置的可迭代对象来实现 # 下文的列子中将会展示 return self
上面定义了一个类IterObj并实现了__iter__()方法,这个就是一个可迭代(Iterable)对象
it = IterObj() print(isinstance(it, Iterable)) # true print(isinstance(it, Iterator)) # false print(isinstance(it, Generator)) # false
记住这个类,下文我们还会看到这个类的定义。
常见的可迭代对象
在Python中有哪些常见的可迭代对象呢?
- 集合或序列类型(如list、tuple、set、dict、str)
- 文件对象
- 在类中定义了__iter__()方法的对象,可以被认为是 Iterable对象,但自定义的可迭代对象要能在for循环中正确使用,就需要保证__iter__()实现必须是正确的(即可以通过内置iter()函数转成Iterator对象。关于Iterator下文还会说明,这里留下一个坑,只是记住iter()函数是能够将一个可迭代对象转成迭代器对象,然后在for中使用)
- 在类中实现了如果只实现__getitem__()的对象可以通过iter()函数转化成迭代器但其本身不是可迭代对象。所以当一个对象能够在for循环中运行,但不一定是Iterable对象。
关于第1、2点我们可以通过以下来验证
print(isinstance([], Iterable)) # true list 是可迭代的 print(isinstance({}, Iterable)) # true 字典是可迭代的 print(isinstance((), Iterable)) # true 元组是可迭代的 print(isinstance(set(), Iterable)) # true set是可迭代的 print(isinstance('', Iterable)) # true 字符串是可迭代的 currPath = os.path.dirname(os.path.abspath(__file__)) with open(currPath+'/model.py') as file: print(isinstance(file, Iterable)) # true
我们再来看第3点,
print(hasattr([], "__iter__")) # true print(hasattr({}, "__iter__")) # true print(hasattr((), "__iter__")) # true print(hasattr('', "__iter__")) # true
这些内置集合或序列对象都有__iter__属性,即他们都实现了同名方法。但这个可迭代对象要在for循环中被使用,那么它就应该能够被内置的iter()函数调用并转化成Iterator对象。
例如,我们看内置的可迭代对象
print(iter([])) # <list_iterator object at 0x110243f28> print(iter({})) # <dict_keyiterator object at 0x110234408> print(iter(())) # <tuple_iterator object at 0x110243f28> print(iter('')) # <str_iterator object at 0x110243f28>
它们都相应的转成了对应的迭代器(Iterator)对象。
现在回过头再看看一开始定义的那个IterObj类
class IterObj: def __iter__(self): return self it = IterObj() print(iter(it))
我们使用了iter()函数,这时候将再控制台上打印出以下信息:
Traceback (most recent call last):
File "/Users/mac/PycharmProjects/iterable_iterator_generator.py", line 71, in <module>
print(iter(it))
TypeError: iter() returned non-iterator of type 'IterObj'
出现了类型错误,意思是iter()函数不能将‘非迭代器'类型转成迭代器。
那如何才能将一个可迭代(Iterable)对象转成迭代器(Iterator)对象呢?
我们修改一下IterObj类的定义
class IterObj: def __init__(self): self.a = [3, 5, 7, 11, 13, 17, 19] def __iter__(self): return iter(self.a)
我们在构造方法中定义了一个名为a的列表,然后还实现了__iter__()方法。
修改后的类是可以被iter()函数调用的,即也可以在for循环中使用
it = IterObj() print(isinstance(it, Iterable)) # true print(isinstance(it, Iterator)) # false print(isinstance(it, Generator)) # false print(iter(it)) # <list_iterator object at 0x102007278> for i in it: print(i) # 将打印3、5、7、11、13、17、19元素
因此在定义一个可迭代对象时,我们要非常注意__iter__()方法的内部实现逻辑,一般情况下,是通过一些已知的可迭代对象(例如,上文提到的集合、序列、文件等或其他正确定义的可迭代对象)来辅助我们来实现
关于第4点说明的意思是iter()函数可以将一个实现了__getitem__()方法的对象转成迭代器对象,也可以在for循环中使用,但是如果用isinstance()方法来检测时,它不是一个可迭代对象。
class IterObj: def __init__(self): self.a = [3, 5, 7, 11, 13, 17, 19] def __getitem__(self, i): return self.a[i] it = IterObj() print(isinstance(it, Iterable)) # false print(isinstance(it, Iterator)) # false print(isinstance(it, Generator)) false print(hasattr(it, "__iter__")) # false print(iter(it)) # <iterator object at 0x10b231278> for i in it: print(i) # 将打印出3、5、7、11、13、17、19
这个例子说明了可以在for中使用的对象,不一定是可迭代对象。
现在我们做个小结:
- 一个可迭代的对象是实现了__iter__()方法的对象
- 它要在for循环中使用,就必须满足iter()的调用(即调用这个函数不会出错,能够正确转成一个Iterator对象)
- 可以通过已知的可迭代对象来辅助实现我们自定义的可迭代对象。
- 一个对象实现了__getitem__()方法可以通过iter()函数转成Iterator,即可以在for循环中使用,但它不是一个可迭代对象(可用isinstance方法检测())
0x01 迭代器(Iterator)
上文很多地方都提到了Iterator,现在我们把这个坑填上。
当我们对可迭代的概念了解后,对于迭代器就比较好理解了。
一个对象实现了__iter__()和__next__()方法,那么它就是一个迭代器对象。 例如
class IterObj: def __init__(self): self.a = [3, 5, 7, 11, 13, 17, 19] self.n = len(self.a) self.i = 0 def __iter__(self): return iter(self.a) def __next__(self): while self.i < self.n: v = self.a[self.i] self.i += 1 return v else: self.i = 0 raise StopIteration()
在IterObj中,构造函数中定义了一个列表a,列表长度n,索引i。
it = IterObj() print(isinstance(it, Iterable)) # true print(isinstance(it, Iterator)) # true print(isinstance(it, Generator)) # false print(hasattr(it, "__iter__")) # true print(hasattr(it, "__next__")) # true
我们可以发现上文提到的
集合和序列对象是可迭代的但不是迭代器
print(isinstance([], Iterator)) # false print(isinstance({}, Iterator)) # false print(isinstance((), Iterator)) # false print(isinstance(set(), Iterator)) # false print(isinstance('', Iterator)) # false
而文件对象是迭代器
currPath = os.path.dirname(os.path.abspath(__file__)) with open(currPath+'/model.py') as file: print(isinstance(file, Iterator)) # true
一个迭代器(Iterator)对象不仅可以在for循环中使用,还可以通过内置函数next()函数进行调用。 例如
it = IterObj() next(it) # 3 next(it) # 5
0x02 生成器(Generator)
现在我们来看看什么是生成器?
一个生成器既是可迭代的也是迭代器
定义生成器有两种方式:
- 列表生成器
- 使用yield定义生成器函数
先看第1种情况
g = (x * 2 for x in range(10)) # 0~18的偶数生成器 print(isinstance(g, Iterable)) # true print(isinstance(g, Iterator)) # true print(isinstance(g, Generator)) # true print(hasattr(g, "__iter__")) # true print(hasattr(g, "__next__")) # true print(next(g)) # 0 print(next(g)) # 2
列表生成器可以不需要消耗大量的内存来生成一个巨大的列表,只有在需要数据的时候才会进行计算。
再看第2种情况
def gen(): for i in range(10): yield i
这里yield的作用就相当于return,这个函数就是顺序地返回[0,10)的之间的自然数,可以通过next()或使用for循环来遍历。
当程序遇到yield关键字时,这个生成器函数就返回了,直到再次执行了next()函数,它就会从上次函数返回的执行点继续执行,即yield退出时保存了函数执行的位置、变量等信息,再次执行时,就从这个yield退出的地方继续往下执行。
在Python中利用生成器的这些特点可以实现协程。协程可以理解为一个轻量级的线程,它相对于线程处理高并发场景有很多优势。
看下面一个用协程实现的生产者-消费者模型
def producer(c): n = 0 while n < 5: n += 1 print('producer {}'.format(n)) r = c.send(n) print('consumer return {}'.format(r)) def consumer(): r = '' while True: n = yield r if not n: return print('consumer {} '.format(n)) r = 'ok' if __name__ == '__main__': c = consumer() next(c) # 启动consumer producer(c)
这段代码执行效果如下
producer 1
consumer 1
producer return ok
producer 2
consumer 2
producer return ok
producer 3
consumer 3
producer return ok
协程实现了CPU在两个函数之间进行切换从而实现并发的效果。
0x04 引用
docs.python.org/3.7/
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。