整数对象在Python内部用PyIntObject结构体表示:
typedef struct { PyObject_HEAD long ob_ival; } PyIntObject;
PyObject_HEAD宏中定义的两个属性分别是:
int ob_refcnt; struct _typeobject *ob_type;
这两个属性是所有Python对象固有的:
- ob_refcnt:对象的引用计数,与Python的内存管理机制有关,它实现了基于引用计数的垃圾收集机制
- ob_type:用于描述Python对象的类型信息。
由此看来PyIntObject就是一个对C语言中long类型的数值的扩展,出于性能考虑,对于小整数,Python使用小整数对象池small_ints缓存了[-5,257)之间的整数,该范围内的整数在Python系统中是共享的。
#define NSMALLPOSINTS 257 #define NSMALLNEGINTS 5 static PyIntObject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
而超过该范围的整数即使值相同,但对象不一定是同一个,如下所示:当a与b的值都是10000,但并不是同一个对象,而值为1的时候,a和b属于同一个对象。
> a = 10000 > b = 10000 > print a is b False > a = 1 > b = 1 > print a is b True
对于超出了[-5, 257)之间的其他整数,Python同样提供了专门的缓冲池,供这些所谓的大整数使用,避免每次使用的时候都要不断的malloc分配内存带来的效率损耗。这块内存空间就是PyIntBlock。
struct _intblock { struct _intblock *next; PyIntObject objects[N_INTOBJECTS]; }; typedef struct _intblock PyIntBlock; static PyIntBlock *block_list = NULL; static PyIntObject *free_list = NULL;
这些内存块(PyIntBlock)通过一个单向链表组织在一起,表头是block_list,表头始终指向最新创建的PyIntBlock对象。
PyIntBlock有两个属性:next,objects。next指针指向下一个PyIntBlock对象,objects是一个PyIntObject数组(最终会转变成单向链表),它是真正用于存储被缓存的PyIntObjet对象的内存空间。
free_list单向链表是所有PyIntBlock内存块中空闲的内存。所有空闲内存通过一个链表组织起来的好处就是在Python需要新的内存来存储新的PyIntObject对象时,能够通过free_list快速获得所需的内存。
创建一个整数对象时,如果它在小整数范围内,就直接从小整数缓冲池中直接返回,如果不在该范围内,就开辟一个大整数缓冲池内存空间:
[intobject.c] PyObject* PyInt_FromLong(long ival) { register PyIntObject *v; #if NSMALLNEGINTS + NSMALLPOSINTS > 0 //[1] :尝试使用小整数对象池 if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { v = small_ints[ival + NSMALLNEGINTS]; Py_INCREF(v); return (PyObject *) v; } #endif //[2] :为通用整数对象池申请新的内存空间 if (free_list == NULL) { if ((free_list = fill_free_list()) == NULL) return NULL; } //[3] : (inline)内联PyObject_New的行为 v = free_list; free_list = (PyIntObject *)v->ob_type; PyObject_INIT(v, &PyInt_Type); v->ob_ival = ival; return (PyObject *) v; }
fill_free_list就是创建大整数缓冲池内存空间的逻辑,该函数返回一个free_list链表,当整数对象ival创建成功后,free_list表头就指向了v->ob_type,ob_type不是所有Python对象中表示类型信息的字段吗?怎么在这里作为一个连接指针呢?这是Python在性能与代码优雅之间取中庸之道,对名称的滥用,放弃了对类型安全的坚持。把它理解成指向下一个PyIntObject的指针即可。
[intobject.c] static PyIntObject* fill_free_list(void) { PyIntObject *p, *q; // 申请大小为sizeof(PyIntBlock)的内存空间 // block list始终指向最新创建的PyIntBlock p = (PyIntObject *) PyMem_MALLOC(sizeof(PyIntBlock)); ((PyIntBlock *)p)->next = block_list; block_list = (PyIntBlock *)p; //:将PyIntBlock中的PyIntObject数组(objects)转变成单向链表 p = &((PyIntBlock *)p)->objects[0]; q = p + N_INTOBJECTS; while (--q > p) // ob_type指向下一个未被使用的PyIntObject。 q->ob_type = (struct _typeobject *)(q-1); q->ob_type = NULL; return p + N_INTOBJECTS - 1; }
不同的PyIntBlock里面的空闲的内存是怎样连接起来构成free_list的呢?这个秘密放在了整数对象垃圾回收的时候,在PyIntObject对象的tp_dealloc操作中可以看到:
[intobject.c] static void int_dealloc(PyIntObject *v) { if (PyInt_CheckExact(v)) { v->ob_type = (struct _typeobject *)free_list; free_list = v; } else v->ob_type->tp_free((PyObject *)v); }
原来PyIntObject对象销毁时,它所占用的内存并不会释放,而是继续被Python使用,进而将free_list表头指向了这个要被销毁的对象上。
总结
- Python中的int对象就是c语言中long类型数值的扩展
- 小整数对象[-5, 257]在python中是共享的
- 整数对象都是从缓冲池中获取的。
- 整数对象回收时,内存并不会归还给系统,而是将其对象的ob_type指向free_list,供新创建的整数对象使用
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。