白云岛资源网 Design By www.pvray.com

本文实例讲述了python关于矩阵重复赋值覆盖问题的解决方法。分享给大家供大家参考,具体如下:

import itertools
import numpy as np
comb = list(itertools.combinations(list(range(regions)), 2))
bands_info = []
coeff = np.zeros([bands, len(comb)])
for cla in range(classes):
  class_info = data[:,cla*bands*regions:(cla+1)*bands*regions]
  for bs in range(bands):
    n = bs*regions
    for i in range(len(comb)):
      index1 = comb[i][0]+n
      index2 = comb[i][1]+n
      part1 = class_info[:, index1]
      part2 = class_info[:, index2]
      coeff[bs, i] = (np.corrcoef(part1, part2))[0, 1]
  bands_info.append(coeff.reshape([1,-1]))
coeff_info = np.vstack((bands_info[0], bands_info[1], bands_info[2],bands_info[3]))

例如这个循环赋值过程,最终得出来的结果是bands_info这个List里面每一个矩阵都是一样的,这是为什么呢?我一开始也在这里纠结了很长时间,思来想去感觉没错的呀。后来想想以前学的C语言知识,才有点明白。原来python里面有浅层copy和深层copy这一说,同是一个矩阵的话占用的是同一个地址,在里面进行重复赋值的话前面的值都会被覆盖掉。不只是当前变量被覆盖掉,就是你之后用到这个变量的也会被覆盖。比如说你a的变量被b覆盖了,那你后面用到a的变量的地方,a的值也会变成b的值。是不是很可怕。

那么应该怎么进行修改呢?

import itertools
import numpy as np
comb = list(itertools.combinations(list(range(regions)), 2))
bands_info = []
for cla in range(classes):
  coeff = np.zeros([bands, len(comb)])
  class_info = data[:,cla*bands*regions:(cla+1)*bands*regions]
  for bs in range(bands):
    n = bs*regions
    for i in range(len(comb)):
      index1 = comb[i][0]+n
      index2 = comb[i][1]+n
      part1 = class_info[:, index1]
      part2 = class_info[:, index2]
      coeff[bs, i] = (np.corrcoef(part1, part2))[0, 1]
  bands_info.append(coeff.reshape([1,-1]))
coeff_info = np.vstack((bands_info[0], bands_info[1], bands_info[2],bands_info[3]))

改成这样就可以了。就是将初始矩阵在循环里在重新设定一遍,意思相当就是给了一次新的地址,再进行复制的话就不会覆盖前面的结果了。

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。