白云岛资源网 Design By www.pvray.com

直接使用Python来实现向量的相加

# -*-coding:utf-8-*-
#向量相加
def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []
 for i in range(len(a)):
  a[i] = i**2
  b[i] = i**3
  c.append(a[i]+b[i])
 return a,b,c

print pythonsum(4),type(pythonsum(4))
for arg in pythonsum(4):
 print arg

从这里这个输出结果可以看得出来,return多个值时,是以列表的形式返回的

([0, 1, 4, 9], [0, 1, 8, 27], [0, 2, 12, 36]) <type 'tuple'>
[0, 1, 4, 9]
[0, 1, 8, 27]
[0, 2, 12, 36]

使用numpy包实现两个向量的相加

def numpysum(n):
 a = np.arange(n) ** 2
 b = np.arange(n) ** 3
 c = a + b
 return a,b,c
(array([0, 1, 4, 9]), array([ 0, 1, 8, 27]), array([ 0, 2, 12, 36])) <type 'function'>
[0 1 4 9]
[ 0 1 8 27]
[ 0 2 12 36]

比较用Python实现两个向量相加和用numpy实现两个向量相加的情况

size = 1000
start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
# print 'The last 2 elements of the sum',c[-2:]
print 'pythonSum elapsed time in microseconds',delta.microseconds

size = 1000
start1 = datetime.now()
c1 = numpysum(size)
delta1 = datetime.now() - start1
# print 'The last 2 elements of the sum',c1[-2:]
print 'numpySum elapsed time in microseconds',delta1.microseconds

从下面程序运行结果我们可以看到在处理向量是numpy要比Python计算高出不知道多少倍

pythonSum elapsed time in microseconds 1000
numpySum elapsed time in microseconds 0

以上这篇关于Python中的向量相加和numpy中的向量相加效率对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com