白云岛资源网 Design By www.pvray.com

相关分析(correlation analysis)

研究两个或两个以上随机变量之间相互依存关系的方向和密切程度的方法。
线性相关关系主要采用皮尔逊(Pearson)相关系数r来度量连续变量之间线性相关强度;
r>0,线性正相关;r<0,线性负相关;
r=0,两个变量之间不存在线性关系,并不代表两个变量之间不存在任何关系。

Python中的相关分析correlation analysis的实现

相关分析函数
DataFrame.corr()
Series.corr(other)

函数说明:
如果由数据框调用corr函数,那么将会计算每个列两两之间的相似度
如果由序列调用corr方法,那么只是该序列与传入的序列之间的相关度

返回值:
DataFrame调用;返回DataFrame

Series调用:返回一个数值型,大小为相关度

import numpy
import pandas
 
data = pandas.read_csv(
  'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
 
bins = [
  min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
]
labels = [
  '20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
 
data['年龄分层'] = pandas.cut(
  data.年龄, 
  bins, 
  labels=labels
)
 
ptResult = data.pivot_table(
  values=['年龄'], 
  index=['年龄分层'], 
  columns=['性别'], 
  aggfunc=[numpy.size]
 File "<ipython-input-1-ae921a24967f>", line 25
  aggfunc=[numpy.size]
            ^
SyntaxError: unexpected EOF while parsing
 
 
import numpy
import pandas
 
data = pandas.read_csv(
  'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
 
bins = [
  min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
]
labels = [
  '20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
 
data['年龄分层'] = pandas.cut(
  data.年龄, 
  bins, 
  labels=labels
)
 
ptResult = data.pivot_table(
  values=['年龄'], 
  index=['年龄分层'], 
  columns=['性别'], 
  aggfunc=[numpy.size]
)
 
ptResult
Out[4]: 
     size    
      年龄    
性别     女   男
年龄分层        
20岁以及以下  111  1950
21岁到30岁 2903 43955
31岁到40岁  735  7994
41岁以上   567  886

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com