白云岛资源网 Design By www.pvray.com

如下所示:

Numpy中reshape的使用方法为:numpy.reshape(a, newshape, order='C')

参数详解:

1.a: type:array_like(伪数组,可以看成是对数组的扩展,但是不影响原始数组。)

需要reshape的array

2.newshape:新的数组

新形状应与原形状兼容。如果是整数,那么结果将是该长度的一维数组。一个形状尺寸可以是-1。在本例中,值是 从数组的长度和剩余维度推断出来的。

3.order: 可选为(C, F, A)

C: 按照行来填充

F: 按照列的顺序来填充

A: 按任意方向,(default)。 这里相当于行

4.returns: ndarray,即返回一或多维数组

实战:

首先,先创建几个n维数组

import numpy as np

Numpy之reshape()使用详解

这里的意思是创建了一个2维数组

Numpy之reshape()使用详解

这里创建了一个3维2X2的数组。

Numpy之reshape()使用详解

这是四维

(1,2) 表示 [[ 0, 1]]
(3,1,2)表示3个(1,2):
[[[ 0, 1]],
[[ 2, 3]],
[[ 4, 5]]],
(2,3,1,2)表示2个(3,1,2):
[ [[[ 0, 1]],
[[ 2, 3]],
[[ 4, 5]]],

[[[ 6, 7]],
[[ 8, 9]],
[[10, 11]]] ]

了解了newshape里面的东西,reshape基本没啥问题了。

我们再来看看order。

分别利用C,F,A来填充数据:

Numpy之reshape()使用详解

这就是reshape基本用法。

以上这篇Numpy之reshape()使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com