白云岛资源网 Design By www.pvray.com
我就废话不多说了,直接上代码吧!
# -*- coding: utf-8 -*- """ Created on Sat Oct 13 10:22:45 2018 @author: www """ import torch from torch import nn from torch.autograd import Variable import torchvision.transforms as tfs from torch.utils.data import DataLoader, sampler from torchvision.datasets import MNIST import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec plt.rcParams['figure.figsize'] = (10.0, 8.0) # 设置画图的尺寸 plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' def show_images(images): # 定义画图工具 images = np.reshape(images, [images.shape[0], -1]) sqrtn = int(np.ceil(np.sqrt(images.shape[0]))) sqrtimg = int(np.ceil(np.sqrt(images.shape[1]))) fig = plt.figure(figsize=(sqrtn, sqrtn)) gs = gridspec.GridSpec(sqrtn, sqrtn) gs.update(wspace=0.05, hspace=0.05) for i, img in enumerate(images): ax = plt.subplot(gs[i]) plt.axis('off') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(img.reshape([sqrtimg,sqrtimg])) return def preprocess_img(x): x = tfs.ToTensor()(x) return (x - 0.5) / 0.5 def deprocess_img(x): return (x + 1.0) / 2.0 class ChunkSampler(sampler.Sampler): # 定义一个取样的函数 """Samples elements sequentially from some offset. Arguments: num_samples: # of desired datapoints start: offset where we should start selecting from """ def __init__(self, num_samples, start=0): self.num_samples = num_samples self.start = start def __iter__(self): return iter(range(self.start, self.start + self.num_samples)) def __len__(self): return self.num_samples NUM_TRAIN = 50000 NUM_VAL = 5000 NOISE_DIM = 96 batch_size = 128 train_set = MNIST('E:/data', train=True, transform=preprocess_img) train_data = DataLoader(train_set, batch_size=batch_size, sampler=ChunkSampler(NUM_TRAIN, 0)) val_set = MNIST('E:/data', train=True, transform=preprocess_img) val_data = DataLoader(val_set, batch_size=batch_size, sampler=ChunkSampler(NUM_VAL, NUM_TRAIN)) imgs = deprocess_img(train_data.__iter__().next()[0].view(batch_size, 784)).numpy().squeeze() # 可视化图片效果 show_images(imgs) #判别网络 def discriminator(): net = nn.Sequential( nn.Linear(784, 256), nn.LeakyReLU(0.2), nn.Linear(256, 256), nn.LeakyReLU(0.2), nn.Linear(256, 1) ) return net #生成网络 def generator(noise_dim=NOISE_DIM): net = nn.Sequential( nn.Linear(noise_dim, 1024), nn.ReLU(True), nn.Linear(1024, 1024), nn.ReLU(True), nn.Linear(1024, 784), nn.Tanh() ) return net #判别器的 loss 就是将真实数据的得分判断为 1,假的数据的得分判断为 0,而生成器的 loss 就是将假的数据判断为 1 bce_loss = nn.BCEWithLogitsLoss()#交叉熵损失函数 def discriminator_loss(logits_real, logits_fake): # 判别器的 loss size = logits_real.shape[0] true_labels = Variable(torch.ones(size, 1)).float() false_labels = Variable(torch.zeros(size, 1)).float() loss = bce_loss(logits_real, true_labels) + bce_loss(logits_fake, false_labels) return loss def generator_loss(logits_fake): # 生成器的 loss size = logits_fake.shape[0] true_labels = Variable(torch.ones(size, 1)).float() loss = bce_loss(logits_fake, true_labels) return loss # 使用 adam 来进行训练,学习率是 3e-4, beta1 是 0.5, beta2 是 0.999 def get_optimizer(net): optimizer = torch.optim.Adam(net.parameters(), lr=3e-4, betas=(0.5, 0.999)) return optimizer def train_a_gan(D_net, G_net, D_optimizer, G_optimizer, discriminator_loss, generator_loss, show_every=250, noise_size=96, num_epochs=10): iter_count = 0 for epoch in range(num_epochs): for x, _ in train_data: bs = x.shape[0] # 判别网络 real_data = Variable(x).view(bs, -1) # 真实数据 logits_real = D_net(real_data) # 判别网络得分 sample_noise = (torch.rand(bs, noise_size) - 0.5) / 0.5 # -1 ~ 1 的均匀分布 g_fake_seed = Variable(sample_noise) fake_images = G_net(g_fake_seed) # 生成的假的数据 logits_fake = D_net(fake_images) # 判别网络得分 d_total_error = discriminator_loss(logits_real, logits_fake) # 判别器的 loss D_optimizer.zero_grad() d_total_error.backward() D_optimizer.step() # 优化判别网络 # 生成网络 g_fake_seed = Variable(sample_noise) fake_images = G_net(g_fake_seed) # 生成的假的数据 gen_logits_fake = D_net(fake_images) g_error = generator_loss(gen_logits_fake) # 生成网络的 loss G_optimizer.zero_grad() g_error.backward() G_optimizer.step() # 优化生成网络 if (iter_count % show_every == 0): print('Iter: {}, D: {:.4}, G:{:.4}'.format(iter_count, d_total_error.item(), g_error.item())) imgs_numpy = deprocess_img(fake_images.data.cpu().numpy()) show_images(imgs_numpy[0:16]) plt.show() print() iter_count += 1 D = discriminator() G = generator() D_optim = get_optimizer(D) G_optim = get_optimizer(G) train_a_gan(D, G, D_optim, G_optim, discriminator_loss, generator_loss)
以上这篇pytorch:实现简单的GAN示例(MNIST数据集)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。