白云岛资源网 Design By www.pvray.com
本文介绍了MNIST数据集转化为二维图片的实现示例,分享给大家,具体如下:
#coding: utf-8 from tensorflow.examples.tutorials.mnist import input_data import scipy.misc import os # 读取MNIST数据集。如果不存在会事先下载。 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 我们把原始图片保存在MNIST_data/raw/文件夹下 # 如果没有这个文件夹会自动创建 save_dir = 'MNIST_data/raw/' if os.path.exists(save_dir) is False: os.makedirs(save_dir) # 保存前20张图片 for i in range(20): # 请注意,mnist.train.images[i, :]就表示第i张图片(序号从0开始) image_array = mnist.train.images[i, :] # TensorFlow中的MNIST图片是一个784维的向量,我们重新把它还原为28x28维的图像。 image_array = image_array.reshape(28, 28) # 保存文件的格式为 mnist_train_0.jpg, mnist_train_1.jpg, ... ,mnist_train_19.jpg filename = save_dir + 'mnist_train_%d.jpg' % i # 将image_array保存为图片 # 先用scipy.misc.toimage转换为图像,再调用save直接保存。 scipy.misc.toimage(image_array, cmin=0.0, cmax=1.0).save(filename) print('Please check: %s ' % save_dir)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。