白云岛资源网 Design By www.pvray.com
代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式。
# -*- coding: utf-8 -*- """ Created on Tue Oct 9 08:53:25 2018 @author: www """ import sys sys.path.append('..') import torch import datetime from torch.autograd import Variable from torch import nn from torch.utils.data import DataLoader from torchvision import transforms as tfs from torchvision.datasets import MNIST #定义数据 data_tf = tfs.Compose([ tfs.ToTensor(), tfs.Normalize([0.5], [0.5]) ]) train_set = MNIST('E:/data', train=True, transform=data_tf, download=True) test_set = MNIST('E:/data', train=False, transform=data_tf, download=True) train_data = DataLoader(train_set, 64, True, num_workers=4) test_data = DataLoader(test_set, 128, False, num_workers=4) #定义模型 class rnn_classify(nn.Module): def __init__(self, in_feature=28, hidden_feature=100, num_class=10, num_layers=2): super(rnn_classify, self).__init__() self.rnn = nn.LSTM(in_feature, hidden_feature, num_layers)#使用两层lstm self.classifier = nn.Linear(hidden_feature, num_class)#将最后一个的rnn使用全连接的到最后的输出结果 def forward(self, x): #x的大小为(batch,1,28,28),所以我们需要将其转化为rnn的输入格式(28,batch,28) x = x.squeeze() #去掉(batch,1,28,28)中的1,变成(batch, 28,28) x = x.permute(2, 0, 1)#将最后一维放到第一维,变成(batch,28,28) out, _ = self.rnn(x) #使用默认的隐藏状态,得到的out是(28, batch, hidden_feature) out = out[-1,:,:]#取序列中的最后一个,大小是(batch, hidden_feature) out = self.classifier(out) #得到分类结果 return out net = rnn_classify() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adadelta(net.parameters(), 1e-1) #定义训练过程 def get_acc(output, label): total = output.shape[0] _, pred_label = output.max(1) num_correct = (pred_label == label).sum().item() return num_correct / total def train(net, train_data, valid_data, num_epochs, optimizer, criterion): if torch.cuda.is_available(): net = net.cuda() prev_time = datetime.datetime.now() for epoch in range(num_epochs): train_loss = 0 train_acc = 0 net = net.train() for im, label in train_data: if torch.cuda.is_available(): im = Variable(im.cuda()) # (bs, 3, h, w) label = Variable(label.cuda()) # (bs, h, w) else: im = Variable(im) label = Variable(label) # forward output = net(im) loss = criterion(output, label) # backward optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.item() train_acc += get_acc(output, label) cur_time = datetime.datetime.now() h, remainder = divmod((cur_time - prev_time).seconds, 3600) m, s = divmod(remainder, 60) time_str = "Time %02d:%02d:%02d" % (h, m, s) if valid_data is not None: valid_loss = 0 valid_acc = 0 net = net.eval() for im, label in valid_data: if torch.cuda.is_available(): im = Variable(im.cuda()) label = Variable(label.cuda()) else: im = Variable(im) label = Variable(label) output = net(im) loss = criterion(output, label) valid_loss += loss.item() valid_acc += get_acc(output, label) epoch_str = ( "Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, " % (epoch, train_loss / len(train_data), train_acc / len(train_data), valid_loss / len(valid_data), valid_acc / len(valid_data))) else: epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, " % (epoch, train_loss / len(train_data), train_acc / len(train_data))) prev_time = cur_time print(epoch_str + time_str) train(net, train_data, test_data, 10, optimizer, criterion)
以上这篇pytorch 利用lstm做mnist手写数字识别分类的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。