白云岛资源网 Design By www.pvray.com

PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks

PyTorch实现AlexNet示例

import torch
import torch.nn as nn
import torchvision

class AlexNet(nn.Module):
  def __init__(self,num_classes=1000):
    super(AlexNet,self).__init__()
    self.feature_extraction = nn.Sequential(
      nn.Conv2d(in_channels=3,out_channels=96,kernel_size=11,stride=4,padding=2,bias=False),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3,stride=2,padding=0),
      nn.Conv2d(in_channels=96,out_channels=192,kernel_size=5,stride=1,padding=2,bias=False),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3,stride=2,padding=0),
      nn.Conv2d(in_channels=192,out_channels=384,kernel_size=3,stride=1,padding=1,bias=False),
      nn.ReLU(inplace=True),
      nn.Conv2d(in_channels=384,out_channels=256,kernel_size=3,stride=1,padding=1,bias=False),
      nn.ReLU(inplace=True),
      nn.Conv2d(in_channels=256,out_channels=256,kernel_size=3,stride=1,padding=1,bias=False),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2, padding=0),
    )
    self.classifier = nn.Sequential(
      nn.Dropout(p=0.5),
      nn.Linear(in_features=256*6*6,out_features=4096),
      nn.ReLU(inplace=True),
      nn.Dropout(p=0.5),
      nn.Linear(in_features=4096, out_features=4096),
      nn.ReLU(inplace=True),
      nn.Linear(in_features=4096, out_features=num_classes),
    )
  def forward(self,x):
    x = self.feature_extraction(x)
    x = x.view(x.size(0),256*6*6)
    x = self.classifier(x)
    return x


if __name__ =='__main__':
  # model = torchvision.models.AlexNet()
  model = AlexNet()
  print(model)

  input = torch.randn(8,3,224,224)
  out = model(input)
  print(out.shape)

以上这篇PyTorch实现AlexNet示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。