白云岛资源网 Design By www.pvray.com
以channel Attention Block为例子
class CAB(nn.Module): def __init__(self, in_channels, out_channels): super(CAB, self).__init__() self.global_pooling = nn.AdaptiveAvgPool2d(output_size=1) self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, padding=0) self.sigmod = nn.Sigmoid() def forward(self, x): x1, x2 = x # high, low x = torch.cat([x1,x2],dim=1) x = self.global_pooling(x) x = self.conv1(x) x = self.relu(x) x = self.conv2(x) x = self.sigmod(x) x2 = x * x2 res = x2 + x1 return res
以上这篇pytorch forward两个参数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。