学习神经网络的时候,网上的数据集已经分割成了batch,训练的时候直接使用batch.next()就可以获取batch,但是有的时候需要使用自己的数据集,然而自己的数据集不是batch形式,就需要将其转换为batch形式,本文将介绍一个将数据打包成batch的方法。
一、tf.slice_input_producer()
首先需要讲解两个函数,第一个函数是 :tf.slice_input_producer(),这个函数的作用是从输入的tensor_list按要求抽取一个tensor放入文件名队列,下面解释下各个参数:
tf.slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None)
tensor_list 这个就是输入,格式为tensor的列表;一般为[data, label],即由特征和标签组成的数据集
num_epochs 这个是你抽取batch的次数,如果没有给定值,那么将会抽取无数次batch(这会导致你训练过程停不下来),如果给定值,那么在到达次数之后就会报OutOfRange的错误
shuffle 是否随机打乱,如果为False,batch是按顺序抽取;如果为True,batch是随机抽取
seed 随机种子
capcity 队列容量的大小,为整数
name 名称
举个例子:我的data的shape为(4000,10),label的shape为(4000,2),运行下面这行代码
input_queue = tf.train.slice_input_producer([data, label], num_epochs=1, shuffle=True, capacity=32 )
结果如图,可以看出返回值为一个包含两组数据的list,每个list的shape与输入的data和label的shape对应
二、tf.train.batch()& tf.train.shuffle_batch()
第二个函数为:tf.train.batch(),tf.train.shuffle_batch(),这个函数的作用为生成大小为batch_size的tensor,下面解释下各个参数:
tf.train.batch([data, label], batch_size=batch_size, capacity=capacity,num_threads=num_thread,allow_smaller_final_batch= True) tf.train.shuffle_batch([example, label], batch_size=batch_size, capacity=capacity,num_threads=num_thread,allow_smaller_final_batch=True)
[data,label] 输入的样本和标签
batch_size batch的大小
capcity 队列的容量
num_threads 线程数,使用多少个线程来控制整个队列
allow_smaller_final_batch 这个是当最后的几个样本不够组成一个batch的时候用的参数,如果为True则会重新组成一个batch
下面给出生成batch的函数,由上面两个函数组成:
def get_Batch(data, label, batch_size): print(data.shape, label.shape) input_queue = tf.train.slice_input_producer([data, label], num_epochs=1, shuffle=True, capacity=32 ) x_batch, y_batch = tf.train.batch(input_queue, batch_size=batch_size, num_threads=1, capacity=32, allow_smaller_final_batch=False) return x_batch, y_batch
还是同样的输入,batch_size设为2000,看下运行后的返回值的shape:
可以发现,返回是样本数目为2000的tensor,也就是达到了将自己的数据打包成batch的功能
三、batch的使用方法
生成batch只完成了一半,后面的使用方法也比较复杂,直接上一个完整的程序来讲解会方便理解一些:下面代码构建了一个单层感知机,对数据进行分类,主要看一下训练过程中如何使用生成好了的batch,具体细节都写在注释里面了。
import tensorflow as tf import scipy.io as sio import numpy as np def get_Batch(data, label, batch_size): print(data.shape, label.shape) input_queue = tf.train.slice_input_producer([data, label], num_epochs=1, shuffle=True, capacity=32 ) x_batch, y_batch = tf.train.batch(input_queue, batch_size=batch_size, num_threads=1, capacity=32, allow_smaller_final_batch=False) return x_batch, y_batch data = sio.loadmat('data.mat') train_x = data['train_x'] train_y = data['train_y'] test_x = data['test_x'] test_y = data['test_y'] x = tf.placeholder(tf.float32, [None, 10]) y = tf.placeholder(tf.float32, [None, 2]) w = tf.Variable(tf.truncated_normal([10, 2], stddev=0.1)) b = tf.Variable(tf.truncated_normal([2], stddev=0.1)) pred = tf.nn.softmax(tf.matmul(x, w) + b) loss = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices=[1])) optimizer = tf.train.AdamOptimizer(2e-5).minimize(loss) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(pred, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='evaluation') x_batch, y_batch = get_Batch(train_x, train_y, 1000) # 训练 with tf.Session() as sess: #初始化参数 sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # 开启协调器 coord = tf.train.Coordinator() # 使用start_queue_runners 启动队列填充 threads = tf.train.start_queue_runners(sess, coord) epoch = 0 try: while not coord.should_stop(): # 获取训练用的每一个batch中batch_size个样本和标签 data, label = sess.run([x_batch, y_batch]) sess.run(optimizer, feed_dict={x: data, y: label}) train_accuracy = accuracy.eval({x: data, y: label}) test_accuracy = accuracy.eval({x: test_x, y: test_y}) print("Epoch %d, Training accuracy %g, Testing accuracy %g" % (epoch, train_accuracy, test_accuracy)) epoch = epoch + 1 except tf.errors.OutOfRangeError: # num_epochs 次数用完会抛出此异常 print("---Train end---") finally: # 协调器coord发出所有线程终止信号 coord.request_stop() print('---Programm end---') coord.join(threads) # 把开启的线程加入主线程,等待threads结束
总共训练的次数为(样本数目/batch_size)*num_epochs
四、 简单生成Batch的方法
最近发现了一种简单生生成batch的方法,实现简单,操作方便,就是时间复杂度可能高了一点,直接上代码。通过np.random.choice方法每次在范围[0, len(all_data))内抽取大小为size的索引。然后通过这部分索引构建batch。
epoch = 150 for i in tqdm(range(epoch)): # 在total_train_xs, total_train_ys数据集中随机抽取batch_size个样本出来 # 作为本轮迭代的训练数据batch_xs, batch_ys batch_size = 1000 sample_idxs = np.random.choice(range(len(all_data)), size=batch_size) batch_xs = [] batch_ys = [] val_sample_idxs = np.random.choice(range(len(all_data)), size=batch_size) val_batch_xs = [] val_batch_ys = [] for j in range(batch_size): train_id = sample_idxs[j] batch_xs.append(all_data[train_id]) batch_ys.append(all_label[train_id]) val_id = val_sample_idxs[j] val_batch_xs.append(all_data[val_id]) val_batch_ys.append(all_label[val_id]) batch_xs = np.array(batch_xs) batch_ys = np.array(batch_ys) val_batch_xs = np.array(val_batch_xs) val_batch_ys = np.array(val_batch_ys) # 喂训练数据进去训练 sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) if i % 50 == 0: y_train_pred = np.array(sess.run(y, feed_dict={x: batch_xs})).reshape(len(batch_xs)) y_pred = np.array(sess.run(y, feed_dict={x: val_batch_xs})).reshape(len(val_batch_xs)) # draw(y_test, y_pred) print("Iteration %d, train RMSE %f, val RMSE %f" % (i, calcaulateRMSE(batch_ys, y_train_pred), calcaulateRMSE(val_batch_ys, y_pred)))
以上这篇使用Tensorflow将自己的数据分割成batch训练实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。