函数原型
tf.nn.dynamic_rnn( cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None )
实例讲解:
import tensorflow as tf import numpy as np n_steps = 2 n_inputs = 3 n_neurons = 5 X = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons) seq_length = tf.placeholder(tf.int32, [None]) outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32, sequence_length=seq_length) init = tf.global_variables_initializer() X_batch = np.array([ # step 0 step 1 [[0, 1, 2], [9, 8, 7]], # instance 1 [[3, 4, 5], [0, 0, 0]], # instance 2 (padded with zero vectors) [[6, 7, 8], [6, 5, 4]], # instance 3 [[9, 0, 1], [3, 2, 1]], # instance 4 ]) seq_length_batch = np.array([2, 1, 2, 2]) with tf.Session() as sess: init.run() outputs_val, states_val = sess.run( [outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch}) print("outputs_val.shape:", outputs_val.shape, "states_val.shape:", states_val.shape) print("outputs_val:", outputs_val, "states_val:", states_val)
log info:
outputs_val.shape: (4, 2, 5) states_val.shape: (4, 5) outputs_val: [[[ 0.53073734 -0.61281306 -0.5437517 0.7320347 -0.6109526 ] [ 0.99996936 0.99990636 -0.9867181 0.99726075 -0.99999976]] [[ 0.9931584 0.5877845 -0.9100412 0.988892 -0.9982337 ] [ 0. 0. 0. 0. 0. ]] [[ 0.99992317 0.96815354 -0.985101 0.9995968 -0.9999936 ] [ 0.99948144 0.9998127 -0.57493806 0.91015154 -0.99998355]] [[ 0.99999255 0.9998929 0.26732785 0.36024097 -0.99991137] [ 0.98875254 0.9922327 0.6505734 0.4732064 -0.9957567 ]]] states_val: [[ 0.99996936 0.99990636 -0.9867181 0.99726075 -0.99999976] [ 0.9931584 0.5877845 -0.9100412 0.988892 -0.9982337 ] [ 0.99948144 0.9998127 -0.57493806 0.91015154 -0.99998355] [ 0.98875254 0.9922327 0.6505734 0.4732064 -0.9957567 ]]
首先输入X是一个 [batch_size,step,input_size] = [4,2,3] 的tensor,注意我们这里调用的是BasicRNNCell,只有一层循环网络,outputs是最后一层每个step的输出,它的结构是[batch_size,step,n_neurons] = [4,2,5],states是每一层的最后那个step的输出,由于本例中,我们的循环网络只有一个隐藏层,所以它就代表这一层的最后那个step的输出,因此它和step的大小是没有关系的,我们的X有4个样本组成,输出神经元大小n_neurons是5,因此states的结构就是[batch_size,n_neurons] = [4,5],最后我们观察数据,states的每条数据正好就是outputs的最后一个step的输出。
下面我们继续讲解多个隐藏层的情况,这里是三个隐藏层,注意我们这里仍然是调用BasicRNNCell
import tensorflow as tf import numpy as np n_steps = 2 n_inputs = 3 n_neurons = 5 n_layers = 3 X = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) seq_length = tf.placeholder(tf.int32, [None]) layers = [tf.contrib.rnn.BasicRNNCell(num_units=n_neurons, activation=tf.nn.relu) for layer in range(n_layers)] multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers) outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32, sequence_length=seq_length) init = tf.global_variables_initializer() X_batch = np.array([ # step 0 step 1 [[0, 1, 2], [9, 8, 7]], # instance 1 [[3, 4, 5], [0, 0, 0]], # instance 2 (padded with zero vectors) [[6, 7, 8], [6, 5, 4]], # instance 3 [[9, 0, 1], [3, 2, 1]], # instance 4 ]) seq_length_batch = np.array([2, 1, 2, 2]) with tf.Session() as sess: init.run() outputs_val, states_val = sess.run( [outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch}) print("outputs_val.shape:", outputs, "states_val.shape:", states) print("outputs_val:", outputs_val, "states_val:", states_val)
log info:
outputs_val.shape: Tensor("rnn/transpose_1:0", shape=("htmlcode">outputs_val.shape: Tensor("rnn/transpose_1:0", shape=("" src="/UploadFiles/2021-04-08/20200120172149.jpg">如果您不查看框内的内容,LSTM单元看起来与常规单元格完全相同,除了它的状态分为两个向量:h(t)和c(t)。你可以将h(t)视为短期状态,将c(t)视为长期状态。
因此我们的states包含三个LSTMStateTuple,每一个表示每一层的最后一个step的输出,这个输出有两个信息,一个是h表示短期记忆信息,一个是c表示长期记忆信息。维度都是[batch_size,n_neurons] = [4,5],states的最后一个LSTMStateTuple中的h就是outputs的最后一个step的输出
以上这篇关于tf.nn.dynamic_rnn返回值详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。