白云岛资源网 Design By www.pvray.com
直接看代码例子,有详细注释!!
import tensorflow as tf import numpy as np d = np.arange(0,60).reshape([6, 10]) # 将array转化为tensor data = tf.data.Dataset.from_tensor_slices(d) # 从data数据集中按顺序抽取buffer_size个样本放在buffer中,然后打乱buffer中的样本 # buffer中样本个数不足buffer_size,继续从data数据集中安顺序填充至buffer_size, # 此时会再次打乱 data = data.shuffle(buffer_size=3) # 每次从buffer中抽取4个样本 data = data.batch(4) # 将data数据集重复,其实就是2个epoch数据集 data = data.repeat(2) # 构造获取数据的迭代器 iters = data.make_one_shot_iterator() # 每次从迭代器中获取一批数据 batch = iters.get_next() sess = tf.Session() sess.run(batch) # 数据集完成遍历完之后,继续抽取的话会报错:OutOfRangeError
In [21]: d Out[21]: array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49], [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]]) In [22]: sess.run(batch) Out[22]: array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]]) In [23]: sess.run(batch) Out[23]: array([[40, 41, 42, 43, 44, 45, 46, 47, 48, 49], [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])
从输出结果可以看出:
shuffle是按顺序将数据放入buffer里面的;
当repeat函数在shuffle之后的话,是将一个epoch的数据集抽取完毕,再进行下一个epoch的。
那么,当repeat函数在shuffle之前会怎么样呢?如下:
data = data.repeat(2) data = data.shuffle(buffer_size=3) data = data.batch(4)
In [25]: sess.run(batch) Out[25]: array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]]) In [26]: sess.run(batch) Out[26]: array([[50, 51, 52, 53, 54, 55, 56, 57, 58, 59], [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]]) In [27]: sess.run(batch) Out[27]: array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [50, 51, 52, 53, 54, 55, 56, 57, 58, 59], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])
可以看出,其实它就是先将数据集复制一遍,然后把两个epoch当成同一个新的数据集,一直shuffle和batch下去。
以上这篇TensorFlow dataset.shuffle、batch、repeat的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。