白云岛资源网 Design By www.pvray.com
tensorflow在保存权重模型时多使用tf.train.Saver().save 函数进行权重保存,保存的ckpt文件无法直接打开,不利于将模型权重导入到其他框架使用(如Caffe、Keras等)。
好在tensorflow提供了相关函数 tf.train.NewCheckpointReader 可以对ckpt文件进行权重查看,因此可以通过该函数进行数据导出。
import tensorflow as tf import h5py cpktLogFileName = r'./checkpoint/checkpoint' #cpkt 文件路径 with open(cpktLogFileName, 'r') as f: #权重节点往往会保留多个epoch的数据,此处获取最后的权重数据 cpktFileName = f.readline().split('"')[1] h5FileName = r'./model/net_classification.h5' reader = tf.train.NewCheckpointReader(cpktFileName) f = h5py.File(h5FileName, 'w') t_g = None for key in sorted(reader.get_variable_to_shape_map()): # 权重名称需根据自己网络名称自行修改 if key.endswith('w') or key.endswith('biases'): keySplits = key.split(r'/') keyDict = keySplits[1] + '/' + keySplits[1] + '/' + keySplits[2] f[keyDict] = reader.get_tensor(key)
以上这篇tensorflow 模型权重导出实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。