目的: 在训练神经网络的时候,有时候需要自己写操作,比如faster_rcnn中的roi_pooling,我们可以可视化前向传播的图像和反向传播的梯度图像,前向传播可以检查流程和计算的正确性,而反向传播则可以大概检查流程的正确性。
实验
可视化rroi_align的梯度
1.pytorch 0.4.1及之前,需要声明需要参数,这里将图片数据声明为variable
im_data = Variable(im_data, requires_grad=True)
2.进行前向传播,最后的loss映射为一个一维的张量
pooled_feat = roipool(im_data, rois.view(-1, 6)) res = pooled_feat.pow(2).sum() res.backward()
3.注意求loss的时候采用更加复杂,或者更多的运算(这样在梯度可视化的时候效果才更加明显)
可视化效果
原始图片
梯度可视化图片
原图+梯度图
小结:
可以看到误差梯度的位置是正确的,误差是否正确,需要其他方式验证(暂时没有思路)
可以看到上面在求loss的时候为:loss = sum(x2),但是如果换成:loss = mean(x),效果就没有上面明显。
实验二的效果
loss = mean(x)
可以看到根本无法看到误差梯度的位置信息
实验三:loss = sum(x)
小结: 可以看到位置信息有差别,比如国徽部分,这会让人以为,国徽部分只利用了左部分的信息,或者自己手写的操作误差索引不对。
可以通过两种方式进行验证
1.用更多,更复杂的运算求loss,比如pow,等
2.用matplotlib显示图片后,用鼠标可以指示每个点的具体的值,可以检测有误差梯度区域是否和无误差梯度区域有差别。
以上这篇pytorch对梯度进行可视化进行梯度检查教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?