背景
总结统计工作中几个常用用法在python统计函数库scipy.stats的使用范例。
正态分布
以正态分布的常见需求为例了解scipy.stats的基本使用方法。
1.生成服从指定分布的随机数
norm.rvs通过loc和scale参数可以指定随机变量的偏移和缩放参数,这里对应的是正态分布的期望和标准差。size得到随机数数组的形状参数。(也可以使用np.random.normal(loc=0.0, scale=1.0, size=None))
In [4]: import numpy as np
In [5]: import scipy.stats as st
In [6]: st.norm.rvs(loc = 0,scale = 0.1,size =10)
Out[6]:
array([ 0.12259875, 0.07001414, 0.11296181, -0.00630321, -0.04377487,
0.00474487, -0.00728678, 0.03860256, 0.06701367, 0.03797084])
In [7]:
In [9]: st.norm.rvs(loc = 3,scale = 10,size=(2,2))
Out[9]:
array([[-13.26078265, 0.88411923],
[ 5.14734849, 17.94093177]])
In [10]:
2.求概率密度函数指定点的函数值
stats.norm.pdf正态分布概率密度函数。
In [33]: st.norm.pdf(0,loc = 0,scale = 1)
Out[33]: 0.3989422804014327
In [34]: st.norm.pdf(np.arange(3),loc = 0,scale = 1)
Out[34]: array([ 0.39894228, 0.24197072, 0.05399097])
In [35]:
3.求累计分布函数指定点的函数值
stats.norm.cdf正态分布累计概率密度函数。
In [52]: st.norm.cdf(0,loc=3,scale=1)
Out[52]: 0.0013498980316300933
In [53]: st.norm.cdf(0,0,1)
Out[53]: 0.5
In [54]:
4.累计分布函数的逆函数
stats.norm.ppf正态分布的累计分布函数的逆函数,即下分位点。
In [59]: z05 = st.norm.ppf(0.05)
In [60]:
In [60]: z05
Out[60]: -1.6448536269514729
In [61]: st.norm.cdf(z05)
Out[61]: 0.049999999999999975
In [62]:
通用函数
stats连续型随机变量的公共方法:
*离散分布的简单方法大多数与连续分布很类似,但是pdf被更换为密度函数pmf。
常见分布
可能用到的分布对照表
以上这篇python统计函数库scipy.stats的用法解析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。