白云岛资源网 Design By www.pvray.com

PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTorch来训练模型基本都会用到该接口,该接口主要用来将自定义的数据读取接口的输出或者PyTorch已有的数据读取接口的输入按照batch size封装成Tensor,后续只需要再包装成Variable即可作为模型的输入,因此该接口有点承上启下的作用,比较重要。

数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。

在训练模型时使用到此函数,用来把训练数据分成多个小组,此函数每次抛出一组数据。直至把所有的数据都抛出。就是做一个数据的初始化。

python torch.utils.data.DataLoader使用方法

生成迭代数据非常方便,请看如下示例:

"""
  批训练,把数据变成一小批一小批数据进行训练。
  DataLoader就是用来包装所使用的数据,每次抛出一批数据
"""
import torch
import torch.utils.data as Data

BATCH_SIZE = 5

x = torch.linspace(1, 10, 10)
y = torch.linspace(10, 1, 10)
# 把数据放在数据库中
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(
  # 从数据库中每次抽出batch size个样本
  dataset=torch_dataset,
  batch_size=BATCH_SIZE,
  shuffle=True,
  num_workers=2,
)


def show_batch():
  for epoch in range(3):
    for step, (batch_x, batch_y) in enumerate(loader):
      # training


      print("steop:{}, batch_x:{}, batch_y:{}".format(step, batch_x, batch_y))


if __name__ == '__main__':
  show_batch()

结果:

python torch.utils.data.DataLoader使用方法

我们来看一下变量类型:

python torch.utils.data.DataLoader使用方法

白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。