pandas 中 inplace 参数在很多函数中都会有,它的作用是:是否在原对象基础上进行修改
inplace = True:不创建新的对象,直接对原始对象进行修改;
"htmlcode">
import pandas as pd import numpy as np df=pd.DataFrame(np.random.randn(4,3),columns=["A","B","C"]) data=df.drop(["A"],axis=1,inplace=True) print(df) print(data) B C 0 0.472730 -0.626685 1 0.065358 0.031326 2 -0.318582 1.123308 3 -0.097687 0.018820 None
inplace=False情况:
df=pd.DataFrame(np.random.randn(4,3),columns=["A","B","C"]) data=df.drop(["A"],axis=1,inplace=False) print(df) print(data) A B C 0 -0.731578 0.226483 0.986656 1 0.075936 1.622889 1.767967 2 -1.477780 -0.164374 -1.025555 3 -0.645208 -0.847264 -0.744622 B C 0 0.226483 0.986656 1 1.622889 1.767967 2 -0.164374 -1.025555 3 -0.847264 -0.744622
另外,要注意的是,inplace的取值只有False和True,如给定0或1,会报如下错误:
ValueError: For argument "inplace" expected type bool, received type int.
补充知识:pandas.DataFrame.drop_duplicates后面inplace=True与inplace=False的区别
drop_duplicates(inplace=True)是直接对原dataFrame进行操作。
如:
t.drop_duplicates(inplace=True) 则,对t中重复将被去除。
drop_duplicates(inplace=False)将不改变原来的dataFrame,而将结果生成在一个新的dataFrame中。
如:
s = t.drop_duplicates(inplace=False) 则,t的内容不发生改变,s的内容是去除重复后的内容
以上这篇对python pandas中 inplace 参数的理解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。