白云岛资源网 Design By www.pvray.com

理论介绍

分词是自然语言处理的一个基本工作,中文分词和英文不同,字词之间没有空格。中文分词是文本挖掘的基础,对于输入的一段中文,成功的进行中文分词,可以达到电脑自动识别语句含义的效果。中文分词技术属于自然语言处理技术范畴,对于一句话,人可以通过自己的知识来明白哪些是词,哪些不是词,但如何让计算机也能理解?其处理过程就是分词算法。

可以将中文分词方法简单归纳为:

1.基于词表的分词方法
2.基于统计的分词方法
3.基于序列标记的分词方法

其中,基于词表的分词方法最为简单,根据起始匹配位置不同可以分为:

1.前向最大匹配算法
2.后向最大匹配算法
3.双向最大匹配算法

三种方法思想都很简单,今天就用python实现前向最大匹配算法。

word分词是一个Java实现的分布式的中文分词组件,提供了多种基于词典的分词算法,并利用ngram模型来消除歧义。能准确识别英文、数字,以及日期、时间等数量词,能识别人名、地名、组织机构名等未登录词。能通过自定义配置文件来改变组件行为,能自定义用户词库、自动检测词库变化、支持大规模分布式环境,能灵活指定多种分词算法,能使用refine功能灵活控制分词结果,还能使用词性标注、同义标注、反义标注、拼音标注等功能。同时还无缝和Lucene、Solr、ElasticSearch、Luke集成。

前向最大匹配算法

前向最大匹配算法,顾名思义,就是从待分词句子的左边向右边搜索,寻找词的最大匹配。我们需要规定一个词的最大长度,每次扫描的时候寻找当前开始的这个长度的词来和字典中的词匹配,如果没有找到,就缩短长度继续寻找,直到找到字典中的词或者成为单字。

具体代码实现

获取分词函数:getSeg(text)

def getSeg(text):
  # 句子为空
  if not text:
    return ''

  # 句子成为一个词
  if len(text) == 1:
    return text

  # 此处写了一个递归方法
  if text in word_dict:
    return text
  else:
    small = len(text) - 1
    text = text[0:small]
    return getSeg(text)

主函数:main()

def main():
  global test_str, word_dict
  test_str = test_str.strip()
  # 正向最大匹配分词测试 最大长度5
  max_len = max(len(word) for word in word_dict)
  result_str = [] # 保存分词结果
  result_len = 0
  print('input :', test_str)
  while test_str:
    tmp_str = test_str[0:max_len]
    seg_str = getSeg(tmp_str)
    seg_len = len(seg_str)
    result_len = result_len + seg_len

    if seg_str.strip():
      result_str.append(seg_str)
    test_str = test_str[seg_len:]

  print('output :', result_str)

字典:

word_dict = ['混沌', 'Logistic', '算法', '图片', '加密', '利用', '还原', 'Lena', '验证', 'Baboon', '效果']

测试句子:

test_str = '''一种基于混沌Logistic加密算法的图片加密与还原的方法,并利用Lena图和Baboon图来验证这种加密算法的加密效果。'''

分词结果

用python实现前向分词最大匹配算法的示例代码

白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com