虽然本人使用django也有几年的时间,但是还是对django中数据模型的null和blank有点分不清楚,我想很多人也和我一样的困惑,现在将全面彻底的讲解下两个的区别。
一、null的使用
1、默认是False的,如果设置为True的时候,django将会映射到数据表指定是否为空
2、如果这个字段设置为False的时候,如果没给这个字段传递任何值的时候,django也会使用一个空字符串('')存储进去
3、如果这个字段设置为True的时候,django会产生两种空值的情形(null和空字符串)
4、如果想要在表单验证的时候允许这个字符串为空的时候,django建议使用blank=True
5、如果你的字段BooleanField的时候,可以为空的建议使用NullBooleanField
1、数据模型代码
class BookModel(models.Model): """ 书籍的数据模型 """ uuid = models.UUIDField(unique=True, default=uuid.uuid4, verbose_name='uuid') name = models.CharField(max_length=100, default='', null=True, verbose_name='书籍名称') # null默认是False,但是本案例中还是写上去,更好区分 author = models.CharField(max_length=100, default='', null=False, verbose_name='作者') # blank=True仅仅是在表单校验的时候可以为空,别的时候没什么区别 price = models.FloatField(default=0, blank=True, verbose_name='价格') create_time = models.DateTimeField(auto_now_add=True, verbose_name='创建时间') update_time = models.DateTimeField(auto_now=True, verbose_name='修改时间') def __str__(self): return '<BookModel>({}, {}, {}, {}, {}, {})'.format(self.uuid, self.name, self.author, self.price,self.create_time, self.update_time) class Meta(object): db_table = 'book'
2、sql语句
CREATE TABLE `book` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(100) DEFAULT NULL, `price` double NOT NULL, `create_time` datetime(6) NOT NULL, `update_time` datetime(6) NOT NULL, `uuid` char(32) NOT NULL, `author` varchar(100) NOT NULL, PRIMARY KEY (`id`), UNIQUE KEY `uuid` (`uuid`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8
3、数据库表结构
4、插入数据后显示对比
二、blank的使用
1、这个字段是在表单验证的时候可以为空,默认是False
2、这个和null是有区别的
blank=True仅仅是在表单验证的时候可以为空
null=True仅仅是数据库级别的null
补充知识:Python中生成器的原理与使用说明
0.range() 函数,其功能是创建一个整数列表,一般用在 for 循环中
语法格式:range(start, stop, step),参数使用参考如下:
start: 计数从 start 开始。默认是从 0 开始。例如range(4)等价于range(0, 4);结果:(0,1,2,3)
stop: 计数到 stop 结束,但不包括 stop。例如:range(0, 5) 是[0, 1, 2, 3, 4]没有5
step:步长,默认为1。例如:range(0, 5) 等价于 range(0, 5, 1)
#使用range函数建立列表 ls =[x*2 for x in range(10)] print(ls)#[0, 2, 4, 6, 8, 10, 12, 14, 16, 18] ls1 = [x for x in range(0,10,2)] #步长是2. print(ls1) #[0, 2, 4, 6, 8] ls2 = [x for x in range(3,10,2)] #开始从3开始,步长是2. print(ls2) # [3, 5, 7, 9] ls3 =[x for x in range(0, -10, -1)] #负数的使用 print(ls3) #[0, -1, -2, -3, -4, -5, -6, -7, -8, -9] print(range(0)) #range(0, 0) print(range(1,0)) #range(1, 0)
1.生成器的创建与元素迭代遍历
1.1创建生成器方法1:只要把一个列表生成式的 [ ] 改成 ( )
生成器(generator)其实是一类特殊的迭代器。前面博客我们每次迭代获取数据(通过next()方法)时按照特定的规律进行生成。但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据。为了达到记录当前状态,并配合next()函数进行迭代使用,python就搞了个生成器。所以说生成器(generator)其实是一类特殊的迭代器。
#1.创建生成器 ls = [x*2 for x in range(10)] generator1 =(x*2 for x in range(10)) #这是一个生成器generator print(ls) print(generator1) #注意,打印生成器,不会像列表一样打印他的值,而是地址。 ''' [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] <generator object <genexpr> at 0x00000239FE00A620> '''
1.1遍历生成器内容
遍历生成器对象中的内容: 1.方法1.使用for循环遍历 for i in generator1: print(i) #方法2:命令行使用next()函数:调用next(G) ,就计算出 G 的下一个元素的值,直到计算到最后一个元素 没有更多的元素时,抛出 StopIteration 的异常。 > generator1 =(x*2 for x in range(5)) > next(generator1) 0 > next(generator1) 2 > next(generator1) 4 > next(generator1) 6 > next(generator1) 8 > next(generator1) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration 2.方法2.python脚本使用next()方法,实际开发中是通过for循环来实现遍历,这种next()方法太麻烦。 g1 =(x*2 for x in range(5)) while True: try: x = next(g1) print(x) except StopIteration as e : print("values=%s"%e.value) break #注意这里要加break,否则会死循环。 '''结果如下: 0 2 4 6 8 values=None ''' 3.方法3:使用对象自带的__next__()方法,效果等同于next(g1)函数 > g1 =(x*2 for x in range(5)) > g1.__next__() 0 > g1.__next__() 2 > g1.__next__() 4 > g1.__next__() 6 > g1.__next__() 8 > g1.__next__() Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration >
1.2创建生成器方法2:使用yield函数创建生成器。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的 for 循环无法实现的时候,还可以用函数来实现。简单来说:只要在def中有yield关键字的 就称为 生成器
#著名的斐波拉契数列(Fibonacci):除第一个和第二个数外,任意一个数都可由前两个数相加得到 #1.举例:1, 1, 2, 3, 5, 8, 13, 21, 34, ...使用函数实现打印数列的任意前n项。 def fib(times): #times表示打印斐波拉契数列的前times位。 n = 0 a,b = 0,1 while n<times: print(b) a,b = b,a+b n+=1 return 'done' fib(10) #前10位:1 1 2 3 5 8 13 21 34 55 #2.将print(b)换成yield b,则函数会变成generator生成器。 #yield b功能是:每次执行到有yield的时候,会返回yield后面b的值给函数并且函数会暂停,直到下次调用或迭代终止; def fib(times): #times表示打印斐波拉契数列的前times位。 n = 0 a,b = 0,1 while n<times: yield b a,b = b,a+b n+=1 return 'done' print(fib(10)) #<generator object fib at 0x000001659333A3B8> 3.对生成器进行迭代遍历元素 方法1:使用for循环 for x in fib(6): print(x) ''''结果如下,发现如何生成器是函数的话,使用for遍历,无法获取函数的返回值。 1 1 2 3 5 8 ''' 方法2:使用next()函数来遍历迭代,可以获取生成器函数的返回值。同理也可以使用自带的__next__()函数,效果一样 f = fib(6) while True: try: #因为不停调用next会报异常,所以要捕捉处理异常。 x = next(f) #注意这里不能直接写next(fib(6)),否则每次都是重复调用1 print(x) except StopIteration as e: print("生成器返回值:%s"%e.value) break '''结果如下: 1 1 2 3 5 8 生成器返回值:done '''
生成器使用总结:
1.生成器的好处是可以一边循环一边进行计算,不用一下子就生成一个很大的集合,占用内存空间。生成器的使用节省内存空间。
2.生成器保存的是算法,而列表保存的计算后的内容,所以同样内容的话生成器占用内存小,而列表占用内存大。每次调用 next(G) ,就计算出 G 的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出 StopIteration 的异常。
3.使用for 循环来遍历生成器内容,因为生成器也是可迭代对象。通过 for 循环来迭代它,不需要关心 StopIteration 异常。但是用for循环调用generator时,得不到generator的return语句的返回值。如果想要拿到返回值,必须用next()方法,且捕获StopIteration错误,返回值包含在StopIteration的value中。
4.在 Python 中,使用了 yield 的函数都可被称为生成器(generator)。生成器是一个返回迭代器的函数,只能用于迭代操作。更简单点理解生成器就是一个迭代器。
5.一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,保存当前所有的运行信息,并返回一个迭代值,下次执行next() 方法时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。生成器不仅“记住”了它数据状态;生成器还“记住”了它在流控制构造中的位置。
以上这篇django数据模型中null和blank的区别说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?