白云岛资源网 Design By www.pvray.com
本文采用的训练方法是牛顿法(Newton Method)。
代码
import numpy as np class LogisticRegression(object): """ Logistic Regression Classifier training by Newton Method """ def __init__(self, error: float = 0.7, max_epoch: int = 100): """ :param error: float, if the distance between new weight and old weight is less than error, the process of traing will break. :param max_epoch: if training epoch >= max_epoch the process of traing will break. """ self.error = error self.max_epoch = max_epoch self.weight = None self.sign = np.vectorize(lambda x: 1 if x >= 0.5 else 0) def p_func(self, X_): """Get P(y=1 | x) :param X_: shape = (n_samples + 1, n_features) :return: shape = (n_samples) """ tmp = np.exp(self.weight @ X_.T) return tmp / (1 + tmp) def diff(self, X_, y, p): """Get derivative :param X_: shape = (n_samples, n_features + 1) :param y: shape = (n_samples) :param p: shape = (n_samples) P(y=1 | x) :return: shape = (n_features + 1) first derivative """ return -(y - p) @ X_ def hess_mat(self, X_, p): """Get Hessian Matrix :param p: shape = (n_samples) P(y=1 | x) :return: shape = (n_features + 1, n_features + 1) second derivative """ hess = np.zeros((X_.shape[1], X_.shape[1])) for i in range(X_.shape[0]): hess += self.X_XT[i] * p[i] * (1 - p[i]) return hess def newton_method(self, X_, y): """Newton Method to calculate weight :param X_: shape = (n_samples + 1, n_features) :param y: shape = (n_samples) :return: None """ self.weight = np.ones(X_.shape[1]) self.X_XT = [] for i in range(X_.shape[0]): t = X_[i, :].reshape((-1, 1)) self.X_XT.append(t @ t.T) for _ in range(self.max_epoch): p = self.p_func(X_) diff = self.diff(X_, y, p) hess = self.hess_mat(X_, p) new_weight = self.weight - (np.linalg.inv(hess) @ diff.reshape((-1, 1))).flatten() if np.linalg.norm(new_weight - self.weight) <= self.error: break self.weight = new_weight def fit(self, X, y): """ :param X_: shape = (n_samples, n_features) :param y: shape = (n_samples) :return: self """ X_ = np.c_[np.ones(X.shape[0]), X] self.newton_method(X_, y) return self def predict(self, X) -> np.array: """ :param X: shape = (n_samples, n_features] :return: shape = (n_samples] """ X_ = np.c_[np.ones(X.shape[0]), X] return self.sign(self.p_func(X_))
测试代码
import matplotlib.pyplot as plt import sklearn.datasets def plot_decision_boundary(pred_func, X, y, title=None): """分类器画图函数,可画出样本点和决策边界 :param pred_func: predict函数 :param X: 训练集X :param y: 训练集Y :return: None """ # Set min and max values and give it some padding x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole gid Z = pred_func(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral) if title: plt.title(title) plt.show()
效果
更多机器学习代码,请访问 https://github.com/WiseDoge/plume
以上就是python 牛顿法实现逻辑回归(Logistic Regression)的详细内容,更多关于python 逻辑回归的资料请关注其它相关文章!
白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?