带有yield的函数在Python中被称之为generator(生成器),也就是说,当你调用这个函数的时候,函数内部的代码并不立即执行 ,这个函数只是返回一个生成器(Generator Iterator)。
def generator(): for i in range(10) : yield i*i gen = generator() print(gen) <generator object generator at 0x7ffaad115aa0>
1. 使用next方法迭代生成器
generator函数怎么调用呢?答案是next函数。
print("first iteration:") print(next(gen)) print("second iteration:") print(next(gen)) print("third iteration:") print(next(gen)) print("fourth iteration:") print(next(gen))
程序输出:
first iteration:
0
second iteration:
1
three iteration:
4
four iteration:
9
在函数第一次调用next(gen)函数时,generator函数从开始执行到yield,并返回yield之后的值。
在函数第二次调用next(gen)函数时,generator函数从上一次yield结束的地方继续运行,直至下一次执行到yield的地方,并返回yield之后的值。依次类推。
2. 使用send()方法与生成器函数通信
def generator(): x = 1 while True: y = (yield x) x += y gen = generator() print("first iteration:") print(next(gen)) print("send iteration:") print(gen.send(10))
代码输出:
first iteration:
1
send iteration:
11
生成器(generator)函数用yield表达式将处理好的x发送给生成器(Generator)的调用者;然后生成器(generator)的调用者可以通过send函数,将外部信息替换生成器内部yield表达式的返回值,并赋值给y,并参与后续的迭代流程。
3. Yield的好处
Python之所以要提供这样的解决方案,主要是内存占用和性能的考量。看类似下面的代码:
for i in range(10000): ...
上述代码的问题在于,range(10000)生成的可迭代的对象都在内存中,如果数据量很大比较耗费内存。
而使用yield定义的生成器(Generator)可以很好的解决这一问题。
参考材料
- https://pyzh.readthedocs.io/en/latest/the-python-yield-keyword-explained.html
- https://liam.page/2017/06/30/understanding-yield-in-python/
总结
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?