白云岛资源网 Design By www.pvray.com

在上一章《Scrapy-Redis入门实战》中我们利用scrapy-redis实现了京东图书爬虫的分布式部署和数据爬取。但存在以下问题:

每个爬虫实例在启动的时候,都必须从start_urls开始爬取,即每个爬虫实例都会请求start_urls中的地址,属重复请求,浪费系统资源。

为了解决这一问题,Scrapy-Redis提供了RedisSpider与RedisCrawlSpider两个爬虫类,继承自这两个类的Spider在启动的时候能够从指定的Redis列表中去获取start_urls;任意爬虫实例从Redis列表中获取某一 url 时会将其从列表中弹出,因此其他爬虫实例将不能重复读取该 url ;对于那些未从Redis列表获取到初始 url 的爬虫实例将一直处于阻塞状态,直到 start_urls列表中被插入新的起始地址或者Redis的Requests列表中出现待处理的请求。

在这里,我们以爬取当当网图书信息为例对这两个Spider的用法进行简单示例。

settings.py 配置如下:

# -*- coding: utf-8 -*-

BOT_NAME = 'dang_dang'

SPIDER_MODULES = ['dang_dang.spiders']
NEWSPIDER_MODULE = 'dang_dang.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36'

# Obey robots.txt rules
ROBOTSTXT_OBEY = False


######################################################
##############下面是Scrapy-Redis相关配置################
######################################################

# 指定Redis的主机名和端口
REDIS_HOST = 'localhost'
REDIS_PORT = 6379

# 调度器启用Redis存储Requests队列
SCHEDULER = "scrapy_redis.scheduler.Scheduler"

# 确保所有的爬虫实例使用Redis进行重复过滤
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"

# 将Requests队列持久化到Redis,可支持暂停或重启爬虫
SCHEDULER_PERSIST = True

# Requests的调度策略,默认优先级队列
SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'

# 将爬取到的items保存到Redis 以便进行后续处理
ITEM_PIPELINES = {
  'scrapy_redis.pipelines.RedisPipeline': 300
}

RedisSpider代码示例

# -*- coding: utf-8 -*-
import scrapy
import re
import urllib
from copy import deepcopy
from scrapy_redis.spiders import RedisSpider


class DangdangSpider(RedisSpider):
  name = 'dangdang'
  allowed_domains = ['dangdang.com']
  redis_key = 'dangdang:book'
  pattern = re.compile(r"(http|https)://category.dangdang.com/cp(.*", re.I)

  # def __init__(self, *args, **kwargs):
  #   # 动态定义可爬取的域范围
  #   domain = kwargs.pop('domain', '')
  #   self.allowed_domains = filter(None, domain.split(','))
  #   super(DangdangSpider, self).__init__(*args, **kwargs)

  def parse(self, response): # 从首页提取图书分类信息
    # 提取一级分类元素
    div_list = response.xpath("//div[@class='con flq_body']/div")
    for div in div_list:
      item = {}
      item["b_cate"] = div.xpath("./dl/dt//text()").extract()
      item["b_cate"] = [i.strip() for i in item["b_cate"] if len(i.strip()) > 0]
      # 提取二级分类元素
      dl_list = div.xpath("./div//dl[@class='inner_dl']")
      for dl in dl_list:
        item["m_cate"] = dl.xpath(".//dt/a/@title").extract_first()
        # 提取三级分类元素
        a_list = dl.xpath("./dd/a")
        for a in a_list:
          item["s_cate"] = a.xpath("./text()").extract_first()
          item["s_href"] = a.xpath("./@href").extract_first()
          if item["s_href"] is not None and self.pattern.match(item["s_href"]) is not None:
            yield scrapy.Request(item["s_href"], callback=self.parse_book_list,
                       meta={"item": deepcopy(item)})

  def parse_book_list(self, response): # 从图书列表页提取数据
    item = response.meta['item']
    li_list = response.xpath("//ul[@class='bigimg']/li")
    for li in li_list:
      item["book_img"] = li.xpath("./a[@class='pic']/img/@src").extract_first()
      if item["book_img"] == "images/model/guan/url_none.png":
        item["book_img"] = li.xpath("./a[@class='pic']/img/@data-original").extract_first()
      item["book_name"] = li.xpath("./p[@class='name']/a/@title").extract_first()
      item["book_desc"] = li.xpath("./p[@class='detail']/text()").extract_first()
      item["book_price"] = li.xpath(".//span[@class='search_now_price']/text()").extract_first()
      item["book_author"] = li.xpath("./p[@class='search_book_author']/span[1]/a/text()").extract_first()
      item["book_publish_date"] = li.xpath("./p[@class='search_book_author']/span[2]/text()").extract_first()
      if item["book_publish_date"] is not None:
        item["book_publish_date"] = item["book_publish_date"].replace('/', '')
      item["book_press"] = li.xpath("./p[@class='search_book_author']/span[3]/a/text()").extract_first()
      yield deepcopy(item)

    # 提取下一页地址
    next_url = response.xpath("//li[@class='next']/a/@href").extract_first()
    if next_url is not None:
      next_url = urllib.parse.urljoin(response.url, next_url)
      yield scrapy.Request(next_url, callback=self.parse_book_list, meta={"item": item})

当Redis 的dangdang:book键所对应的start_urls列表为空时,启动DangdangSpider爬虫会进入到阻塞状态等待列表中被插入数据,控制台提示内容类似下面这样:

2019-05-08 14:02:53 [scrapy.core.engine] INFO: Spider opened
2019-05-08 14:02:53 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)
2019-05-08 14:02:53 [scrapy.extensions.telnet] DEBUG: Telnet console listening on 127.0.0.1:6023

此时需要向start_urls列表中插入爬虫的初始爬取地址,向Redis列表中插入数据可使用如下命令:

lpush dangdang:book http://book.dangdang.com/

命令执行完后稍等片刻DangdangSpider便会开始爬取数据,爬取到的数据结构如下图所示:

Scrapy-Redis之RedisSpider与RedisCrawlSpider详解

RedisCrawlSpider代码示例

# -*- coding: utf-8 -*-
import scrapy
import re
import urllib
from copy import deepcopy
from scrapy.spiders import CrawlSpider, Rule
from scrapy.linkextractors import LinkExtractor
from scrapy_redis.spiders import RedisCrawlSpider


class DangdangCrawler(RedisCrawlSpider):
  name = 'dangdang2'
  allowed_domains = ['dangdang.com']
  redis_key = 'dangdang:book'
  pattern = re.compile(r"(http|https)://category.dangdang.com/cp(.*", re.I)

  rules = (
    Rule(LinkExtractor(allow=r'(http|https)://category.dangdang.com/cp(.*"//ul[@class='bigimg']/li")
    for li in li_list:
      item["book_img"] = li.xpath("./a[@class='pic']/img/@src").extract_first()
      if item["book_img"] == "images/model/guan/url_none.png":
        item["book_img"] = li.xpath("./a[@class='pic']/img/@data-original").extract_first()
      item["book_name"] = li.xpath("./p[@class='name']/a/@title").extract_first()
      item["book_desc"] = li.xpath("./p[@class='detail']/text()").extract_first()
      item["book_price"] = li.xpath(".//span[@class='search_now_price']/text()").extract_first()
      item["book_author"] = li.xpath("./p[@class='search_book_author']/span[1]/a/text()").extract_first()
      item["book_publish_date"] = li.xpath("./p[@class='search_book_author']/span[2]/text()").extract_first()
      if item["book_publish_date"] is not None:
        item["book_publish_date"] = item["book_publish_date"].replace('/', '')
      item["book_press"] = li.xpath("./p[@class='search_book_author']/span[3]/a/text()").extract_first()
      yield deepcopy(item)

    # 提取下一页地址
    next_url = response.xpath("//li[@class='next']/a/@href").extract_first()
    if next_url is not None:
      next_url = urllib.parse.urljoin(response.url, next_url)
      yield scrapy.Request(next_url, callback=self.parse_book_list)

 与DangdangSpider爬虫类似,DangdangCrawler在获取不到初始爬取地址时也会阻塞在等待状态,当start_urls列表中有地址即开始爬取,爬取到的数据结构如下图所示:

Scrapy-Redis之RedisSpider与RedisCrawlSpider详解

白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?