白云岛资源网 Design By www.pvray.com

在作图过程中,需要绘制多个变量,但是每个变量的数量级不同,在一个坐标轴下作图导致曲线变化很难观察,这时就用到多个坐标轴。本文除了涉及多个坐标轴还包括Axisartist相关作图指令、做图中label为公式的表达方式、matplotlib中常用指令。

一、放一个官方例子先

from mpl_toolkits.axisartist.parasite_axes import HostAxes, ParasiteAxes
import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure(1) #定义figure,(1)中的1是什么
ax_cof = HostAxes(fig, [0, 0, 0.9, 0.9]) #用[left, bottom, weight, height]的方式定义axes,0 <= l,b,w,h <= 1

#parasite addtional axes, share x
ax_temp = ParasiteAxes(ax_cof, sharex=ax_cof)
ax_load = ParasiteAxes(ax_cof, sharex=ax_cof)
ax_cp = ParasiteAxes(ax_cof, sharex=ax_cof)
ax_wear = ParasiteAxes(ax_cof, sharex=ax_cof)

#append axes
ax_cof.parasites.append(ax_temp)
ax_cof.parasites.append(ax_load)
ax_cof.parasites.append(ax_cp)
ax_cof.parasites.append(ax_wear)

#invisible right axis of ax_cof
ax_cof.axis['right'].set_visible(False)
ax_cof.axis['top'].set_visible(False)
ax_temp.axis['right'].set_visible(True)
ax_temp.axis['right'].major_ticklabels.set_visible(True)
ax_temp.axis['right'].label.set_visible(True)

#set label for axis
ax_cof.set_ylabel('cof')
ax_cof.set_xlabel('Distance (m)')
ax_temp.set_ylabel('Temperature')
ax_load.set_ylabel('load')
ax_cp.set_ylabel('CP')
ax_wear.set_ylabel('Wear')

load_axisline = ax_load.get_grid_helper().new_fixed_axis
cp_axisline = ax_cp.get_grid_helper().new_fixed_axis
wear_axisline = ax_wear.get_grid_helper().new_fixed_axis

ax_load.axis['right2'] = load_axisline(loc='right', axes=ax_load, offset=(40,0))
ax_cp.axis['right3'] = cp_axisline(loc='right', axes=ax_cp, offset=(80,0))
ax_wear.axis['right4'] = wear_axisline(loc='right', axes=ax_wear, offset=(120,0))

fig.add_axes(ax_cof)

''' #set limit of x, y
ax_cof.set_xlim(0,2)
ax_cof.set_ylim(0,3)
'''

curve_cof, = ax_cof.plot([0, 1, 2], [0, 1, 2], label="CoF", color='black')
curve_temp, = ax_temp.plot([0, 1, 2], [0, 3, 2], label="Temp", color='red')
curve_load, = ax_load.plot([0, 1, 2], [1, 2, 3], label="Load", color='green')
curve_cp, = ax_cp.plot([0, 1, 2], [0, 40, 25], label="CP", color='pink')
curve_wear, = ax_wear.plot([0, 1, 2], [25, 18, 9], label="Wear", color='blue')

ax_temp.set_ylim(0,4)
ax_load.set_ylim(0,4)
ax_cp.set_ylim(0,50)
ax_wear.set_ylim(0,30)

ax_cof.legend()

#轴名称,刻度值的颜色
#ax_cof.axis['left'].label.set_color(ax_cof.get_color())
ax_temp.axis['right'].label.set_color('red')
ax_load.axis['right2'].label.set_color('green')
ax_cp.axis['right3'].label.set_color('pink')
ax_wear.axis['right4'].label.set_color('blue')

ax_temp.axis['right'].major_ticks.set_color('red')
ax_load.axis['right2'].major_ticks.set_color('green')
ax_cp.axis['right3'].major_ticks.set_color('pink')
ax_wear.axis['right4'].major_ticks.set_color('blue')

ax_temp.axis['right'].major_ticklabels.set_color('red')
ax_load.axis['right2'].major_ticklabels.set_color('green')
ax_cp.axis['right3'].major_ticklabels.set_color('pink')
ax_wear.axis['right4'].major_ticklabels.set_color('blue')

ax_temp.axis['right'].line.set_color('red')
ax_load.axis['right2'].line.set_color('green')
ax_cp.axis['right3'].line.set_color('pink')
ax_wear.axis['right4'].line.set_color('blue')

plt.show()

该例子的作图结果为:

python 用Matplotlib作图中有多个Y轴

二、实际绘制

在实际使用中希望绘制的多变量数值如下表所示:

python 用Matplotlib作图中有多个Y轴

为了实现这个作图,经过反复修改美化,代码如下:

1.导入包

from mpl_toolkits.axisartist.parasite_axes import HostAxes, ParasiteAxes
import matplotlib.pyplot as plt

2.导入数据

x = ['ATL','LAX','CLT','LAS','MSP','DTW','PHX','DCA','SLC','ORD','DFW','PHL','PDX','DEN','IAH','BOS','SAN','BWI','MDW','IND']
k_in = [49.160,47.367,26.858,30.315,16.552,28.590,23.905,18.818,28.735,6.721,10.315,26.398,38.575,7.646,11.227,8.864,15.327,19.120,11.521,19.618]
k_out = [38.024,19.974,25.011,22.050,30.108,18.327,20.811,28.464,23.72,8.470,4.119,10.000,25.158,7.851,10.450,11.130,15.441,7.519,20.819,32.825]
p = [0.0537,0.0301,0.0306,0.0217,0.0229,0.0223,0.0218,0.0179,0.0155,0.0465,0.0419,0.0165,0.0091,0.0357,0.0232,0.0200,0.0129,0.0143,0.0113,0.0064]
K = [4.6844,2.0296,1.5858,1.1347,1.0706,1.0442,0.9764,0.8447,0.8141,0.7066,0.6041,0.5990,0.5808,0.5534,0.5023,0.3992,0.3964,0.3799,0.3639,0.3331]

3.作图并保存,相关指令后有备注,可以帮助理解

fig = plt.figure(1) #定义figure

ax_k = HostAxes(fig, [0, 0, 0.9, 0.9]) #用[left, bottom, weight, height]的方式定义axes,0 <= l,b,w,h <= 1

#parasite addtional axes, share x
ax_p = ParasiteAxes(ax_k, sharex=ax_k)
ax_K = ParasiteAxes(ax_k, sharex=ax_k)

#append axes
ax_k.parasites.append(ax_p)
ax_k.parasites.append(ax_K)

ax_k.set_ylabel('$K_i^{in}\;/\;K_i^{out}$')
ax_k.axis['bottom'].major_ticklabels.set_rotation(45)
ax_k.set_xlabel('Airport')
ax_k.axis['bottom','left'].label.set_fontsize(12) # 设置轴label的大小
ax_k.axis['bottom'].major_ticklabels.set_pad(8) #设置x轴坐标刻度与x轴的距离,坐标轴刻度旋转会使label和坐标轴重合
ax_k.axis['bottom'].label.set_pad(12) #设置x轴坐标刻度与x轴label的距离,label会和坐标轴刻度重合
ax_k.axis[:].major_ticks.set_tick_out(True) #设置坐标轴上刻度突起的短线向外还是向内

#invisible right axis of ax_k
ax_k.axis['right'].set_visible(False)
ax_k.axis['top'].set_visible(True)
ax_p.axis['right'].set_visible(True)
ax_p.axis['right'].major_ticklabels.set_visible(True)
ax_p.axis['right'].label.set_visible(True)
ax_p.axis['right'].major_ticks.set_tick_out(True)
ax_p.set_ylabel('${p_i}$')
ax_p.axis['right'].label.set_fontsize(13)
ax_K.set_ylabel('${K_i}$')

K_axisline = ax_K.get_grid_helper().new_fixed_axis

ax_K.axis['right2'] = K_axisline(loc='right', axes=ax_K, offset=(60,0))
ax_K.axis['right2'].major_ticks.set_tick_out(True)
ax_K.axis['right2'].label.set_fontsize(13)
fig.add_axes(ax_k)

curve_k1, = ax_k.plot(list(range(20)), k_in, marker ='v',markersize=8,label="$K_i^{in}$",alpha = 0.7)
curve_k2, = ax_k.plot(list(range(20)), k_out, marker ='^',markersize=8, label="$K_i^{out}$",alpha = 0.7)
curve_p, = ax_p.plot(list(range(20)), p, marker ='P',markersize=8,label="${p_i}$",alpha = 0.7)
curve_K, = ax_K.plot(list(range(20)), K, marker ='o',markersize=8, label="${K_i}$",alpha = 0.7,linewidth=3)
plt.xticks(list(range(20)), x)
# ax_k.set_xticks(list(range(20))) 
# ax_k.set_xticklabels(x)
ax_k.axis['bottom'].major_ticklabels.set_rotation(45)

# ax_k.set_rotation(90)
# plt.xticks(list(range(20)), x, rotation = 'vertical')

ax_p.set_ylim(0,0.06)
ax_K.set_ylim(0,5)

ax_k.legend(labelspacing = 0.4, fontsize = 10)

#轴名称,刻度值的颜色 

ax_p.axis['right'].label.set_color(curve_p.get_color()) # 坐标轴label的颜色
ax_K.axis['right2'].label.set_color(curve_K.get_color())


ax_p.axis['right'].major_ticks.set_color(curve_p.get_color()) # 坐标轴刻度小突起的颜色
ax_K.axis['right2'].major_ticks.set_color(curve_K.get_color())

ax_p.axis['right'].major_ticklabels.set_color(curve_p.get_color()) # 坐标轴刻度值的颜色
ax_K.axis['right2'].major_ticklabels.set_color(curve_K.get_color())

ax_p.axis['right'].line.set_color(curve_p.get_color()) # 坐标轴线的颜色
ax_K.axis['right2'].line.set_color(curve_K.get_color())
plt.savefig('10.key metrics mapping.pdf', bbox_inches='tight', dpi=800)
plt.show()

4.绘制结果

python 用Matplotlib作图中有多个Y轴

PS

该作图是在Axisartist的基础上完成的,一些平时常用的绘制指令在此处是无用的。经过查找相关资料,https://www.osgeo.cn/matplotlib/tutorials/toolkits/axisartist.html 该网站可以提供一些用法的帮助。

以上就是python 用Matplotlib作图中有多个Y轴的详细内容,更多关于python Matplotlib作图的资料请关注其它相关文章!

白云岛资源网 Design By www.pvray.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
白云岛资源网 Design By www.pvray.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?